• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To find out what factors affect the resistance of a wire (besides current of temperature)

Extracts from this document...

Introduction

Aim: -

To find out what factors affect the resistance of a wire (besides current of temperature.) We must use two different variables.

Variables: -

Variables Chosen Variables

Length of wire.

Thickness

Type of wire.

Chosen Variable: -

I have chosen length of wire as one as my variables because it will give me a good range of results. I will be able to compare the results from the shortest wire to the longest. I will start at 100cm then I will take 10cm off each time until I get to 50cm. (100,90,80,70,60,50cm)

The type of wire will also give me a good range of results because I will be able to see if the difference in thickness of wire makes a difference and if the different type of wire makes a difference. (E.g. aluminum and copper.) The thickness will range between 0.71mm and 0.20mm. So I will do as many different types of metal that I can do with in the allotted time.

Prediction: -

For preliminary work, we tested how the temperature of a circuit can affect the resistance of a bulb filament. We altered the temperature of the wire by changing how much power passed through the wire – using a rheostat.

...read more.

Middle

When you measure the piece of wire lay it out on a one-meter ruler and hold it and one end and count in the appropriate number. You can re measure it if it is not the correct number. The wire must be straight when being measured.

Coil the wire around the pencil and attach to circuit. Make sure no crossovers. (The circuit will short circuit if there are crossovers)

Take readings form ammeter and voltmeter. Do three repeats to improve accuracy. Do the repeats by altering the rheostat. One from either end and one from the middle.

Record results again. Repeat with different length wire.

When doing different type of wire as the variable measure it out to 102cm each time and again measure in 1cm from each end and place the crocodile clips on 1cm in. Then do the same three repeats using the rheostat and then change the type of wire. I will be using the thinner wires so that is why I have gone under 100cm in-between the clips. When attaching the wires make sure that the wire is not long and thin because it will have no amp reading. If the wire is short and fat it will have no volt reading.

...read more.

Conclusion

Set up apparatus just like circuit shown in the diagram. You will need a voltmeter, ammeter, battery pack (6volt pack), six wires and a piece of Measure out a piece of wire at 102cm and mark in 1cm at each end then clip it right on the 1cm mark.

When you measure the piece of wire lay it out on a one-meter ruler and hold it and one end and count in the appropriate number. You can re measure it if it is not the correct number. The wire must be straight when being measured.

Place the wire over the crack glue the clips to the wall. Make sure no crossovers. (The circuit will short circuit if there are crossovers)

Take readings form ammeter and voltmeter. Do three repeats to improve accuracy. Do the repeats by altering the rheostat. One from either end and one from the middle.

Record results again. Repeat with different length wire.

You could stick the wire across the crack and measure the resistance. The wire would be floppy at the moment. You could then come back after a month and measure the resistance again. If the resistance had increased the wire would have got longer. Therefore the crack would have widened. The apparatus will rest on the floor.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Resistance Aim: my main aim is to investigate the factors that affect the resistance ...

    3 star(s)

    The current is the same through each resistor. The total resistance of the circuit is found by simply adding up the resistance value of the individual resistors: equivalent resistance of resistors in series is R = R1 + R2 * Resistance in parallel circuit: The results of this experiment proved

  2. Investigating resistance when altering thickness of wire / length of wire

    It is important that only the temperature is changed since this is what is being investigated. Method * Apparatus I have chosen to use a 10cm3 measuring cylinder to measure the volumes of substances used since it is more accurate than a pipette.

  1. Resistance and Wires

    By deducting the previous recording for 10cm of 1.8 from 4.0, 2.2ohms remains. ). 2.2ohms is therefore the amount of resistance that 15cm of wire has because the difference between 10cm and 25cm is 15cm. This method can be used to find the amount of resistance for any length of

  2. How does current vary with voltage in a light bulb?

    2V 0.62 0.62 0.62 0.62 3V 1.16 1.16 1.17 1.16 4V 1.89 1.89 1.88 1.89 5V 2.40 2.41 2.40 2.40 6V 3.11 3.12 3.12 3.12 Average Current Average Voltage Equation Answer (2dp) Test 1 0.62 0.96 R=V/I 1.54 Test 2 1.16 1.81 R=V/I 1.56 Test 3 1.89 3.00 R=V/I 1.59

  1. Factors which affect the resistance of a wire

    I will also straighten out the wire when measuring it so that the length of wire I have used is accurate. I will also repeat each experiment 3 times in my practical and average the results to get the most accurate result in the end.

  2. To find out what happens to the efficiency of a motor as I change ...

    transferred into gravitational potential energy the same for every lift, we made sure that the motor's load was place at exactly ground level, with the string taut every time the experiment was run. If the load was above ground level, it would have taken less energy to be transferred to lift it 0.5m, giving an unfair picture of the efficiency.

  1. Investigating The Characteristics Of A Filament Lamp

    for each voltage were added together and divided by three, in order to find the average current. Once this had been discovered, Ohm's law (R=V/I) was employed to work out the resistance in ?. This mathematical process was repeated for each of the voltages.

  2. Investigating the factors that affect the resistance of a metal wire

    Attached to the wire was the crocodile clip which connected to the ammeter and the power pack. The voltmeter was connected in parallel with the plug to plug wires. I measured the current and p.d. for each length (20, 40, 60 and 80 cm)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work