• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate and observe how the amplitude (angle of release), affects the time period of one oscillation of a pendulum.

Extracts from this document...

Introduction

Factor: Amplitude (angle of release.)

Aim – To investigate and observe how the amplitude (angle of release), affects the time period of one oscillation of a pendulum.

Prediction – As I conducted my preliminary experiments I found that as I increase the amplitude of the pendulum string the time for one oscillation increases. Hence I predict that as I increase the amplitude of the pendulum string the time period for one oscillation increases.

Hypothesis – In my prediction I stated that as I increase the amplitude of the pendulum string the time period for one oscillation increases. This is backed up on the scientific theory that if the pendulum is raised at a greater angle it will have to cover a greater distance. Also as it is raised higher it will have more gravitational potential energy than kinetic energy. The higher the angle is the greater the gravitational potential energy. Since there is more gravitational potential energy, it means that there will be less kinetic energy as less of the gravitational potential energy will be converted to kinetic energy, and that there is more distance to cover.

...read more.

Middle

Repeat these steps again. Except increase the amplitude of the string each time by 10° until 70°. E.g. 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90°, 100°.Once the results have been collected and recorded. You will be able to calculate the time period for one oscillation from the average time period. This can be done by dividing the average time period by 10.

Results:

Time for 10 Oscillations

Amplitude Degrees (°)

1

...read more.

Conclusion

Evaluation:

The evidence obtained was reliable and the procedure used to obtain this evidence was accurate. The entire accuracy of both experiments was fairly good. Both experiments used aid of a human and a human made all the measurements which were vital for the success of the experiment. For the length factor my percentage error was very low which illustrated to me that the experiment was conducted accurately. The experiment in which amplitude was a factor was quite different as my results led me to believe something else. As I have said before my percentage error was very low this signifies that my results are able to support a firm conclusion. The reliability of my evidence is fairly good. In the experiment in which amplitude was a factor, the results were also reliable and I repeated my readings three times so that I could obtain and average. I did the same in the other experiment as well.

For further improvements to the investigation I would experiment in the mass of the bob and if it affects the time period of one oscillation. I would also be interested in calculating the speed at which the bob travels and how factors can affect this as well.

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Additional Science - What affects the period of a pendulum?

    3 star(s)

    7- Aim to stop the stopwatch as soon as the ball bearing completes one oscillation. 8- Once all the lengths of the strings have been tested, repeat the experiment again to see if the second set of results are similar.

  2. Period of Oscillation of a Simple Pendulum

    Therefore, I have no evidence to back up my conclusion, even though I believe it is the right conclusion. In my experiments, if I timed an experiment wrong, and I was sure that I had significantly mis-calculated it, then I repeated that part of the experiment until I was sure

  1. To investigate the time taken for the pendulum to oscillate for a time period.

    This also leads to the reason why the longer the string the longer the period. Again imagine that the pendulum is part of a circle, and an arc of the circumference is the distance it travels. To work out the distance of the arc you use 2?r.?/360 where ?

  2. Physics Coursework: To investigate the Oscillations of a mass on a spring

    Output variable: I will be doing 2 dependent variables. Time for one oscillation; in another words the period (frequency) will be my output. I will do 10 oscillations then divide it by 10 at the end to get the average of one oscillation.

  1. What affects the time period of a pendulum.

    These are the angle, and the length of the string. There is one other variable and that is the force of gravity; this could vary because the pull of gravity is not the same all over the earth. What will affect the accuracy of results?

  2. Investigate the factors which determine the damping of a compound pendulum to find an ...

    From the equation ? = VL/g we can see that the effective length of the pendulum is proportional to the square of the angular velocity of the system. So again when the system is oscillating faster energy will be lost more quickly. Surface area of pendulum A larger surface area perpendicular to the motion

  1. Damped Oscillation.

    The two variables I would use are x (displacement) and t (time). The acceleration is . Because I assume this motion is SHM, the acceleration is proportional to the displacement which is between the pendulum bob and the centre. Then the equation =kx is coming out.

  2. Strength of a string practical investigation

    string, as adding 200g masses it would take too long for the string to break (as it takes time to add the 200g mass each time) and as I am allocated two hour to conduct my experiment, then I would not be able to collect all my results that I

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work