• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate how the length of a wire affects its resistance.

Extracts from this document...

Introduction

Resistance of a Wire

Investigation

Aim

To investigate how the length of a wire affects its resistance.

Introduction

Electricity flows through some things better than others. How well something conducts electricity is measured by its resistance. Resistance in a wire depends on how thick the wire is, how long it is and what it's made of. The lower the resistance of a wire, the better it conducts.

There are many other factors that affect how much resistance an object has. The factor that I will be investigating will be the length of wire, and how this affects the amount of resistance the wire has.

Background Knowledge

The knowledge that I already have on this topic is on Ohms law and how to measure resistance using a voltmeter and an ammeter.

Ohm's law says that the amount of current flowing in a circuit is directly proportional to the electromotive force put on the circuit. This means that if you double the number of batteries in a circuit, the current flowing through the circuit will also double. Similarly, Ohm’s law states that the current flowing through a circuit is inversely proportional to the total resistance of the circuit. This means that if I double the current in a circuit, the resistance will drop by double the amount. Using Ohm’s law I can work out the resistance when I know the current and voltage.

...read more.

Middle

1.52

2.04

1.64

2.04

1.62

20

2.60

1.04

2.84

1.12

2.79

1.13

30

2.98

0.81

3.21

0.84

3.19

0.86

40

3.70

0.64

3.46

0.69

3.52

0.68

50

3.71

0.57

3.64

0.58

3.06

0.59

60

3.72

0.50

3.75

0.50

3.77

0.50

70

3.86

0.43

3.87

0.45

3.88

0.49

80

3.94

0.39

3.99

0.40

3.96

0.40

90

4.04

0.36

4.08

0.36

4.00

0.36

100

4.10

0.33

4.09

0.33

4.11

0.33

My results show that the higher the voltage, the lower the current and I believe that this true for all of the results. Because I have compared my data with three experiments I believe that all of the data is accurate – though, the 50cm experiment on the third test is slightly out of place. This can be put down to a unique error in the reading of the result or a sudden fault in the voltmeter. However, the most probable cause of this irregular result is the change in the surrounding temperature. Temperature affects the resistance because if the wire is heated up, the atoms in the wire will start to vibrate more rapidly. This will cause more collisions between the electrons and the atoms due to atoms moving into the path of the flowing electrons.

Now, I will find the resistance for each test as I have the voltage and current. After working out the resistance I will find the average of the resistances. Taking the average is a more accurate method of measurement of a wide range of readings.

...read more.

Conclusion

As well as making these modifications, I could also expand on my investigation by testing the same wire but different widths of that wire. I think the circuit and method used was suitable as it was very time efficient to work with. However, if I had time, I would do the experiment again but changing the separate lengths of wire each time.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Marked by a teacher

    Investigating how the length of wire affects its resistance

    3 star(s)

    (Double of 2.5 ohms) Therefore, my graph proves my quantitative prediction to be correct. Doubling the length of the wire means the resistance also doubles; they are directly proportional. This is because twice the length of a wire means twice the amount of atoms within, which doubles the chance of

  2. Resistance of a Wire Investigation

    plant as it is produced, and so I shall therefore be measuring this. To photosynthesise the plant takes CO2 from the water, as carbon dioxide dissolves from the air into water, but the amounts of CO2 in the water are too small to produce a quick reaction.

  1. Investigating how the length of a Wire affects its resistance.

    wire or high ambient temperatures, the resistance increases merely because the nuclei vibrate faster. This meant that the gaps between adjacent nuclei are decreased and the resistance increases; conversely, when a wire is cooled, resistance decreases because there is more space between the nuclei as they are vibrating slower.

  2. To investigate how the length (mm) and the cross-sectional (mm2) area of a wire ...

    Therefore, my predictions will be based on these ideas. 1.9.1. LENGTH: I predict that the resistance will be directly proportional to the length of the wire, i.e. the resistance will increase as the length increases. Since there is no limit to a length of a wire, there would consequently be no limit to the resistance of a wire.

  1. How length affects resistance in a wire

    After I had decided this I had to check all the equipment that I would be using and how I would use them when performing my actual results. Here is a diagram showing the apparatus I have chosen to use, this is not my circuit diagram: This is now a

  2. "Are rechargeable batteries more economical than alkaline batteries?"

    a contact check showed that by providing greater pressure to the poles, it was still able to give a little spot of light. However, soon after the light was gone. Only Rayovac Maximum was able to reach just before the 12-hour observation.

  1. An Experiment To Investigate How The Length Of A Wire Affects The Resistance

    So a thin wire has more resistance than a thick one. * Material - A nichrome wire has more resistance than a copper wire of the same size. * Temperature - For metal conductors, resistance increases with temperature. For semiconductors, it decreases with temperature.

  2. To Investigate How Length Affects the Resistance of a Length of Wire.

    The free electrons are given energy and as a result move and collide with neighbouring free electrons. This happens across the length of the wire and thus electricity is conducted. Resistance is the result of energy loss as heat. It involves collisions between the free electrons and the fixed particles of the metal, other free electrons, and impurities.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work