• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4
5. 5
5
6. 6
6
7. 7
7
8. 8
8
9. 9
9
10. 10
10
11. 11
11
12. 12
12

# To investigate one factor that will affect the rate of decomposition of hydrogen peroxide.

Extracts from this document...

Introduction

Aim: To investigate one factor that will affect the rate of decomposition of hydrogen peroxide * The word equation for the decomposition of hydrogen peroxide is: Hydrogen peroxide � oxygen + water The chemical equation is: 2H O � O + 2 H O * The rate of reaction is the rate at which the reactants react or products are being formed in relation to the time factor. The factors affecting the rate of reaction are as follows: 1) Temperature 2) Surface area 3) Concentration if the reactants are liquid or pressure if the reactants are gases. 4) Amount of catalyst 5) Type of catalyst * The chosen factor: Concentration * When I increase the concentration of the reactant ( in this case hydrogen Peroxide) the rate of reaction will increase (in this case the rate of production oxygen). The rate of reaction is directly proportional to the concentration. If I double the concentration, I expect that the rate of reaction will double as a result. Prediction The rate of reaction means the rate at which H O (l) and O (g) are formed, which is the same as the rate at which H O (aq) is used up. We would measure the rate of this reaction as moles of hydrogen peroxide used up per second. The rate of reaction for the decomposition of hydrogen peroxide I look more closely at the decomposition of hydrogen peroxide in solution. ...read more.

Middle

Then I will put one end of the glass tube in the conical flask and the other end in the measuring cylinder at the same time I will start the stop watch. Then I start to count the volume of oxygen for 30s, 60s, 90s, 120s, 150s, 180s, and write them down. Scientific reasons Tub of water- oxygen is not soluble in water. Measuring cylinder - easy to measure the volume of oxygen produced. Conical flask - facilitate through mixing of reactants. Stand - to fix the measuring cylinder firmly and upright. Glass tube - if it is a rubber tube, it is very difficult to insert through the water and it will be blocked by the measuring cylinder pressing on it by its own weight. Pipette - small volume of liquid could be transferred effectively. Balance- to measure the weight accurately. Test tube- small volume of liquids could be measured accurately. Stop watch - to measure the time accurately. The above comments are important because scientific experiments require accurate and precise measurements. Risk assessment Hydrogen peroxide: caution must be taken in handling hydrogen peroxide because it is irritative and burns the skin when it comes into contact with the skin. The results of the preliminary experiment are as follows: Volume of hydrogen peroxide ml Time s Volume of oxygen cm� 2 30 73 2 60 83 2 90 84 2 120 85 2 150 86 2 180 88 4 30 53 4 60 59 4 90 61 4 120 64 4 150 65 4 180 66 6 30 ...read more.

Conclusion

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related GCSE Patterns of Behaviour essays

1. ## Investigation of the effect of the concentration of hydrogen peroxide on the rate of ...

0.2g of Manganese Oxide was then measured out onto a piece of paper and weighed to ensure accuracy. The Manganese Oxide was then placed into the conical flask, which was then immediately sealed with the bung, and the stopwatch was started.

2. ## Factors Affecting the Rate of Catalytic Decomposition of Hydrogen Peroxide.

Volume of H2O2 did not affect the preliminary experiment results hugely (apart from final amount of O2 gas given off) and so it is most probably not suitable as a variable. As all of the above variables are not suitable to be used as input variables (this was decided using

1. ## The Effect of Catalase in the Breakdown of Hydrogen Peroxide

Finally; from this experiment, I have come to a conclusion that the higher the rate of the reaction at the end of the experiment, the higher amount of catalase used (and less water involved) in the reaction. I also decided that the anomalous results were the recordings that were influence by factors affecting the rate of the reaction.

2. ## Studying the rate of reaction of the catalyst decomposition of hydrogen peroxide.

This shows the reaction happening with 25% concentration. As you can see because there are some hydrogen peroxide molecules then there is something for the catalyst to collide with therefore a reaction will occur? This diagram represents the reaction with 100% concentration. It shows that there are more molecules than 50%.

1. ## Investigation into the initial rate of hydrogen peroxide decomposition when the enzyme catalase is ...

3 For each of the results tables a graph has been drawn. These graphs show the best-fit curves, highlight any anomalous results and have the initial rates of reaction on. To work out the initial rate of reaction a time, at which the initial rate of reaction will be measured, is taken.

2. ## Rate of Reaction Investigations - Decomposition of Hydrogen Peroxide.

Average (s) 1st 2nd 3rd (cm3) 0 0 0 0 0 30 30* 20 20 20 1:00 50* 35 35 35 1:30 63* 47 47 47 2:00 73* 55 57 56 2:30 80* 62 64 63 3:00 85* 69 71 70 3:30 90* 73 76 75 4:00 94* 78 81

1. ## Find out how the rate of hydrolysis of an organic halogen compound depends on ...

Figure 17 Looking at the graph in Figure 18, which shows the curves for both 300 K and 310 K, it can be seen that at the higher temperature, a significantly higher proportion of molecules (about twice as many) have energies above 50kJ mol-1.

2. ## Magnesium Oxide

mass which also means that we would get the wrong result for a particular length. Why we had to lift the lid was so that we could check if the reaction stopped and to let oxygen in so that the reaction could continue well.

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to