• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To investigate the rate of the reaction between different concentrations of Hydrochloric acid and sodium thiosulphate

Extracts from this document...

Introduction

Rates of Reaction Coursework. Planning Aim: To investigate the rate of the reaction between different concentrations of Hydrochloric acid and sodium thiosulphate. Method: 1. Get a piece of card which has a black cross on it and place underneath a conical flask 2. Get three measuring cylinders. Using one, measure out the amount of Hydrochloric Acid and in the other measure out the Sodium thiosulphate, in the third measure out the amount of water. 3. Once the correct amounts are measured in the measuring cylinders, put the sodium thiosulphate and water into the conical flask. 4. Make sure the stopwatch is ready and at the same time pour the acid into the conical flask as well as starting the stopwatch. 5. The observer needs to watch the reaction and stop the stopwatch as soon as the black cross on the card is not viable. 6. The results need to be recorded. This method needs to be repeated for the following amounts of Hydrochloric Acid, Sodium thiosulphate and water. Experiment Hydrochloric Acid Sodium Thiosulphate Water (ml�) (ml�) (ml�) 1. 5 50 0 2. 5 40 10 3. 5 30 20 4. 5 20 30 5. 5 10 40 6. 5 0 50 To record my results, I plan to time how long it takes for the cross on the piece of card to disappear. ...read more.

Middle

I will place the measuring cylinders on a flat surface when measuring out the substance and carefully make sure that the meniscus lies on the measuring line. I will also use the same, conical flask for each experiment so that the solutions have the same area and volume to react in. The conical flask will also be rinsed and dried out for each experiment. I am going to observe the experiment throughout myself, because if other people observe it as well, then the results may become anomalous as the observation of two different people will not always be exactly the same. Preliminary Work For my preliminary work I decided which experiment would be the best to investigate. I had the option of: * Measuring the mass loss, as a gas is produced, using a balance. * Measuring the maximum volume of gas and the time at which the reaction stops using a gas syringe. * Measure how long it takes for a certain amount of sulphur precipitate to form, by observing the reaction through a conical flask until the cross from underneath isn't viewable. I decided not to measure the mass loss of gas produced because the experiment can become inaccurate if a low mass gas is produced, e.g. ...read more.

Conclusion

Evaluating My experiment was successful because I took great precautions when undertaking the experiment. I used accurate equipment, and observed the reaction throughout so that the results had been recorded under the conditions of the same observation. The method I used was suitable as it goes through the experiment systematically. Nevertheless, there is always room for improvements; such as I could have used a digital stopwatch to time the reaction as a digital stopwatch measures the time in seconds up to two digital places (0.00 seconds) This would automatically improve the accuracy of the results. I could also use another person to stop the stopwatch when the reaction comes to its end as a second could be added in stopping the stopwatch. Although there is room for minor adjustments, the results seem accurate and reliable because they follow the same pattern. Thus I believe they support my prediction and collusion as both show that the rate of reaction decreases as the concentration of Sodium Thiosulphate increases. Also they both show that the Sodium Thiosulphate reacts with the Hydrochloric Acid to form the reaction and produced the Sulphur precipitate, as when there was none present the reaction had no effect. The following reaction produces the Sulphur precipitate, Sodium + Hydrochloric Sodium + Water + Sulphur + Sulphur Thiosulphate Acid Chloride Dioxide Na S O (aq) + 2HCl (aq) 2NaCl (aq) + H O (l) + S (s) + SO (g) ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. The aim of this coursework is to investigate the rate of reaction between sodium ...

    In the graph titled "concentration of sodium thiosulphate against average time", the trend clearly seems to show that this is the case. This means that it takes less time for the cross to disappear, when the concentration of sodium thiosulphate is higher.

  2. The reaction between Sodium Thiosulphate and Hydrochloric Acid.

    they should have been and so they wouldn't have had as much energy and therefore the reaction would have taken longer because it would have taken the particles more time to collide with each other and cause a successful collision.

  1. To observe the effect of different concentrations of ferric nitrate on the equilibrium between ...

    In part 3, we will increase the concentration of Cyanate ions by adding Potassium Thiocyanate to the system in equilibrium. This will add a stress to the equation by increasing the concentration of one of the reactants. Since there will now be more reactant molecules, I predict that the reaction

  2. Experiment to Investigate the Rate of Reaction between Hydrochloric Acid and Sodium Thiosulphate, with ...

    As it is a strong acid and has is able to kill bacteria, it is used in detergents such as toilet cleaners and rust removers in high concentrations that are lethal to humans. It is very corrosive, and can cause blindness and injury to the skin if the person handling it is unprotected.

  1. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    PPM MINUTES (30 SEC INTERVALS) PPM 00.30 190 04.30 630 01.00 290 05.00 668 01.30 361 05.30 695 02.00 417 06.00 725 02.30 462 06.30 754 03.00 515 07.00 775 03.30 550 07.30 804 04.00 591 08.00 825 0.8cm3 concentration: MINUTES (30 SEC INTERVALS)

  2. An Experiment to Investigate the Effect of Changing the Concentration of Hydrochloric Acid on ...

    Reading 2 (s) Reading 3 (s) Average Reading (s) Rate of Reaction (arbituary units) 0 none none none none none 0.2 78 39 54 57 0.02 0.4 38 47 28 38 0.03 0.6 45 34 53 37 0.03 Control Variables I need to explain how and why I kept key variables other than hydrochloric concentration constant.

  1. Experiment to investigate how changing the concentration of hydrochloric acid affects the rate of ...

    Catalysts speed up reactions by providing an alternative pathway. With a catalyst, less activation energy is needed. Hence, increasing the rate of reaction. This is shown in figure 2. Energy Level diagram Plan The aim of this investigation is to investigate how changing the concentration of hydrochloric acid affects the rate of its reaction with the reactant.

  2. Rate of Reaction - Sodium Thiosulphate and Hydrochloric Acid Coursework

    This can be justified by relating to the collision theory. If solutions of reacting particles are made more concentrated there are more particles per unit volume. Collisions between reacting particles are therefore more likely to occur. All this can be understood better with full understanding of the collision theory itself:

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work