• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

To investigate three factors that affect the rate of cooling a liquid and to test these factors to see exactly how much they affect the rate of cooling water.

Extracts from this document...


Aim The aim of this experiment is to investigate three factors that affect the rate of cooling a liquid and to test these factors to see exactly how much they affect the rate of cooling water. Background Information * The specific heat capacity of a substance is the heat required to produce a 1?C rise in 1kg. * The 'thirst' of a substance for heat is measured by it's specific heat capacity (c). * Heat is measured in joules (J). * The formula for heat received or given out is: * Heat received or given out = mass ? temperature change ? specific heat capacity * The formula for the heat received by water is: * Heat received by water (J) = power by heater (J/s) ? time heater on (s) * The formula for the specific heat capacity is: * Specific Heat capacity = heat received by water mass (kg) ? temp. rise * The formula for the rate of energy loss is: * Rate of energy loss = U value ? surface area ? temp. difference * The U value for a specified heat conductor is the heat energy lost per second through it per square metre when there is a temperature difference of 1?C between its surfaces. * The rate at which an object cools, i.e. at which it's temperature falls can be shown to be proportional to its area (A) to its volume (V): * For a cube of side l o A1 / V1 = 6 ? ...read more.


Finally I shall use the same material beakers and they will be all the same size and on the same material mat when cooling. Experiment 3 - In the third experiment I shall use the same water source for all the beakers and have the water at the same temperature when I start the stop clock. I shall use the same thermometer for all the beakers and I shall record all the beakers temperatures until they reach the same temperature. Finally I shall use the same size beakers, despite the fact that they are all different materials. Prediction Experiment 1 - I think that in the first experiment the beaker with no insulation will cool the quickest, then the corrugated card and finally the woollen lagging. I think this because in the beaker with no insulation, there is nothing except the glass of the beaker, stopping the heat from escaping, but with the woollen lagging and the card there is a barrier making it harder for the heat to escape. Experiment 2 - I think that in the second experiment the beaker with the least amount of water in it will cool the fastest and the beaker with the most water will cool the slowest. I think this because the energy is constantly being transferred from the water, being lost, so if there is less water this process can occur more quickly. Experiment 3 - I think that in the third experiment the good conductors, like aluminium and copper will cool more quickly than the bad conductor, glass. ...read more.


When I first attempted the different volumes of water I found that my original quantities of water took far too long to cool and so I had to reduce the quantities of the water as we could only observe the results in our Physics lesson. On the experiments when I tested for insulation, I did not actually make a cover for the beaker of the same material insulation and therefore the results may not be that accurate. Most of the heat was lost through the top of the beaker so that is why the end temperatures do not greatly differ. The equipment we used to take these readings could have altered the accuracy of the experiment if they were not that accurate themselves. The equipment that I assumed to be correct were the thermometers and the water baths. The factors that also limited my experiment were time, as I could only record results in my short hour Physics lesson and could only record up to twelve minutes to allow enough time for each of the experiments. Other factors may have also interfered with the experiments like different room temperatures for the different experiments and the water from the taps which may have varied in Ph slightly from experiment to experiment. These factors would not make significant changes to results, but it is worth noting them for reference. The experiments that I carried out were as fair as I could make them with the limited resources that I was given to carry them out and any other errors in results are the results of equipment inaccuracy. Daniel Sheedy 4RM ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Aqueous Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Aqueous Chemistry essays

  1. Science Investigation Report - Aim To investigate how the voltage of the electric ...

    It will be measured using a 25cm3 measuring cylinder and be maintained at 100cm3. --> Surface area of the copper metal submerged in electrolyte - The surface area of the anode (copper metal piece) should be the same so that the amount of copper metal ionized at the same time

  2. How much Iron (II) in 100 grams of Spinach Oleracea?

    Add Sulphuric Acid (aq) to the volumetric flask until it is about 1 cm below the graduation mark. h. Slowly add the acid using a clean dropping pipette until the bottom of the meniscus is touching the graduation mark. i. Stopper the flask and invert it several times. j.

  1. construction science and materials

    Sulphate attack can only occur if: * Water is present either from rain or ground water, * Soluble sulphates are present in the bricks or the ground. * Tricalcium aluminate in the Portland cement is between 8 and 13% To avoid or reduce the risk of sulphate attack: * Ensure the brickwork does not remain saturated for long periods.

  2. An experiment to see how much sugar can be dissolved in different volumes of ...

    the required volume of water then I will repeat the experiment by adding the sugar and timing its time to dissolve until the sugar stops dissolving. I will repeat the experiment 6 times in total, each time I will only change the volume of water and noting when the sugar stops dissolving in the water.

  1. To investigate the factors that affect the amount energy produced in neutralisation reactions.

    The reactions, which are accompanied by a drop in temperature, are known as endothermic reactions; these reactions take in heat. When using a value of measure to the amount of heat given out, the end result is given a negative value for the change in energy.

  2. What effect does the colour of a can have on its rate of heat ...

    lid is polystyrene or bubble wrap then the heat loss through the top of the can will slow down. The higher the volume of water used, the lower the heat loss because when there is a high volume of water, the outside of the water will cool down, but the inside will stay warm.

  1. Specific Heat Capacity

    0.12997 0.20528 0.09878 0.20449 Mass of water (kg) (m) 0.18053 0.15736 0.14120 0.15458 Start temperature (oC) (t1) 17.0 17.6 16.2 15.8 Final temperature (oC) 25.2 34.0 24.8 39.0 Final temperature, cooling corrected (oC) (t2) 26.6 34.4 25.5 39.6 Boiling temperature (oC)

  2. Application of Hess's Law

    x2)/2 = 0.05 Moles 1 mole of Na2CO3 would produce twenty time more energy = 0.05 x 20 = 1 mole The average enthalpy change for 0.05 Moles of Na2CO3 = (104.5+209+418)/3 = 243.84 Joules For 1 mole of Na2CO3 = 243.84 Joules x 20 = 4876.7 Joules I have

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work