• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To measure the acceleration due to gravity using a pendulum

Extracts from this document...

Introduction

Length in (meters) 1 2 3 Average Time Time 1.0 21.06 20.46 21.06 21.02 2.10 4.41 0.9 19.84 19.56 20.01 19.80 1.98 3.92 0.8 18.75 18.43 18.78 18.65 1.86 3.47 0.7 17.68 17.70 17.78 17.72 1.77 3.13 0.6 16.32 16.15 16.06 16.06 1.61 2.61 0.5 14.84 14.59 14.65 14.65 1.50 2.25 0.4 13.22 13.18 13.06 13.06 1.31 1.73 0.3 11.56 12.32 11.87 11.87 1.19 1.42 0.2 09.59 08.56 08.75 08.75 0.89 0.80 To measure the acceleration due to gravity using a pendulum Introduction We were asked to find out measure the acceleration due to the gravity using a pendulum. ...read more.

Middle

Find the time for 10 swings, repeat this 3 times to get an average for 10 swings. Find the time for 1 swing record the results and calculate time in second. My prediction - as the piece of string gets longer the longer it will take to do a swing. Apparatus - We used a stand G-clamp, string, pendulum, stopwatch and a holder. ...read more.

Conclusion

The answer came to 4.12. My prediction - was that as the length of the string went up the time went up. This was correct and can be proved by looking at the graph. Changing - If I had to change anything to this experiment I would make it easier to measure the length of the string as it is extremely hard to get the exact length. Conclusion - From this experiment I have learnt that the length of the string attached to the pendulum effects the gravity force acting on the pendulum swing. By Ollie Prior ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Determination of the acceleration due to gravity using a simple pendulum.

    This can be shown by the formula for arc length = r? with r representing the length (radius) and ? representing the displacement in radians. If r increases so will the arc length (i.e. distance travelled by bob). This assumption may explain the anomalous nature of the results for the lengths of 1.10m and 1.20m.

  2. Determining the acceleration due to gravity by using simple pendulum.

    Thickness variations are a product of the source and history of the material. Oceanic crust is thinner than continental crust. Continental crust is thickest under mountain ranges. Density variations occur due to the presence of concentrated and large mineral deposits or petroleum gas and related liquids trapped in sedimentary rocks and structures.

  1. Measuring Acceleration due to Gravity using a simple Pendulum.

    0.17% 0.61% 1.39% 0.700 0.14% 0.57% 1.28% 0.800 0.13% 0.53% 1.19% 0.900 0.11% 0.51% 1.15% 1.000 0.10% 0.47% 1.04% Percentage error of g = (percentage error of length) + 2(percentage error of period) The maximum percentage error of g = 3.92 8.

  2. The determination of the acceleration due to gravity at the surface of the earth, ...

    for the pendulum to complete a set number of oscillations, so that I can calculate the period. By doing this for a range of lengths I will be able to relate my results to the above equation, by finding the gradient of the line of period´┐Ż plotted against length of pendulum.

  1. Determination of the Acceleration due to Gravity on the Earth’s Surface

    This equation (http://en.wikipedia.org/wiki/Pendulum) is used to determine g from the data we can measure. Here, l is the length of the pendulum, and T is the time taken for one oscillation. Equipment * Stopwatch * Pendulum, of a fixed mass and a light string The human error that could be

  2. An Experiment Using a Pendulum to Find the Acceleration due to Gravity.

    The length is included in the formula, it will be one of the things used in calculating the acceleration due to gravity, and therefore needs to be measured as accurately as possible. The fishing line idea due to its clean crisp nature will have less friction at its pivot than the meccano idea.

  1. Determining the Acceleration Due to Gravity

    at the height of it's swing it has the greatest restoring force, and at it's equilibrium position is has no restoring force. Once the mass has reached equilibrium it is travelling at it's greatest speed and so has the greatest momentum, the restoring force is at a minimum so the

  2. Acceleration due to gravity lab

    Make sure when dropping the ball the person dropping it does not exert extra force on it, as that could tamper with your results. Repeat these steps at least two more times for this height, you can call it Height #1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work