• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To measure the acceleration due to gravity using a pendulum

Extracts from this document...


Length in (meters) 1 2 3 Average Time Time 1.0 21.06 20.46 21.06 21.02 2.10 4.41 0.9 19.84 19.56 20.01 19.80 1.98 3.92 0.8 18.75 18.43 18.78 18.65 1.86 3.47 0.7 17.68 17.70 17.78 17.72 1.77 3.13 0.6 16.32 16.15 16.06 16.06 1.61 2.61 0.5 14.84 14.59 14.65 14.65 1.50 2.25 0.4 13.22 13.18 13.06 13.06 1.31 1.73 0.3 11.56 12.32 11.87 11.87 1.19 1.42 0.2 09.59 08.56 08.75 08.75 0.89 0.80 To measure the acceleration due to gravity using a pendulum Introduction We were asked to find out measure the acceleration due to the gravity using a pendulum. ...read more.


Find the time for 10 swings, repeat this 3 times to get an average for 10 swings. Find the time for 1 swing record the results and calculate time in second. My prediction - as the piece of string gets longer the longer it will take to do a swing. Apparatus - We used a stand G-clamp, string, pendulum, stopwatch and a holder. ...read more.


The answer came to 4.12. My prediction - was that as the length of the string went up the time went up. This was correct and can be proved by looking at the graph. Changing - If I had to change anything to this experiment I would make it easier to measure the length of the string as it is extremely hard to get the exact length. Conclusion - From this experiment I have learnt that the length of the string attached to the pendulum effects the gravity force acting on the pendulum swing. By Ollie Prior ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Determination of the acceleration due to gravity using a simple pendulum.

    This can be shown by the formula for arc length = r? with r representing the length (radius) and ? representing the displacement in radians. If r increases so will the arc length (i.e. distance travelled by bob). This assumption may explain the anomalous nature of the results for the lengths of 1.10m and 1.20m.

  2. Determining the acceleration due to gravity by using simple pendulum.

    Thickness variations are a product of the source and history of the material. Oceanic crust is thinner than continental crust. Continental crust is thickest under mountain ranges. Density variations occur due to the presence of concentrated and large mineral deposits or petroleum gas and related liquids trapped in sedimentary rocks and structures.

  1. Measuring Acceleration due to Gravity using a simple Pendulum.

    0.0392 = 0.37 9.43 + 0.37 = 9.80 9.43 - 0.37 = 9.06 My result was 9.43 and as you can see it is fairly accurate because it is just outside the range of values for the percentage error.

  2. In this experiment I aim to find out how the force and mass affect ...

    the original experiment, meaning it is likely to be very inaccurate when I try to calculate the results. As my results came to g = 9.79 N/Kg, which is only off 0.02 N/Kg, I am sure that If I were to rectify the recognised causes of error I would easily get g = 9.81 N/kg.

  1. The determination of the acceleration due to gravity at the surface of the earth, ...

    Therefore the kinetic energy must also increase by the same amount. This would imply that the pendulum will oscillate faster as the velocity has increased, due to increase kinetic energy. However, the increase in displacement amplitude meant that height of the pendulum bob increased and so distance the pendulum bob oscillates has also increased.

  2. Acceleration due to gravity lab

    Then, allow the group member holding the ball to move halfway down the staircase. When the camera or video recording device is ready, drop the basketball from halfway down the staircase and record. Repeat this step at least two more times for this height, you can call it height #2.

  1. Determination of the Acceleration due to Gravity on the Earth’s Surface

    I predict that the g value I will receive from my experiment will be lower than 9.81ms-2, since air resistance will affect the results taken. The actual effect will depend on the weight, and therefore, the mass of the object which will be used to measure g.

  2. Determining Gravity with a Pendulum

    Using the whiteboard marker and ruler, rule a line directly from the pivot point to the center of the pendulum (NOTE: the length of the line should be 90cm) on the whiteboard. 1. Rule a 7.9cm line horizontal to the left from the point where the center of the pendulum is located.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work