• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To See if the temperature of a squash ball and the height it is dropped from affects the height of the bounce and amount of energy used up.

Extracts from this document...

Introduction

Investigation: To See if the temperature of a squash ball and the   height it is dropped from affects the height of the bounce and amount of energy used up.

Choice of Equipment:

    I have chosen to use a video camera to measure the bounce of the squash ball. A Meter ruler to measure the height the ball is to be dropped from and the height of the bounce. A heat proof mat, tripod stand, a beaker, a Bunsen burner and a thermometer to use as a water bath to heat the squash balls to set temperatures. I also need a clamp stand to hold the ruler vertical to improve the accuracy of my measurements. Precision scales to measure the mass of squash ball accurately. I will also need a constant surface to drop the ball onto to make the results fair. This is because if one time the ball drops onto a groove or a uneven surface more energy cud be wasted and the results wouldn’t be fair.

Preliminary Work:

...read more.

Middle

    I also know that as temperature increases, the molecules in the ball gain more energy and begin to move more, as the molecule vibrate more and as rubber has a positive temperature coefficient the ball has more energy the hotter it becomes. This increase in energy should increase the height that the ball bounces as it will have more energy in total as it initially reaches the ground than a cooler ball would.

Method:

  1. – Collect equipment listed above and set up appropriately making sure ruler is perpendicular to the horizontal surface the ball is to be dropped on to, by using a set square and level.
  2. – Weigh the squash ball 3 times on the scales and take an average of the masses. This mass will then be used as the mass of the squash ball.
  3. – Place the squash ball in the Water bath and heat to the desired temperature (30 then 35 then 40 then 45 then 50 degrees).
  4. – While waiting for the ball to reach the temperature desired,
...read more.

Conclusion

Safety

To ensure the safety of everyone around I will firstly work in a clear area. I will also be vigilant and watch the experiment to make sure nothing is going wrong. As my experiment involves fire I will keep all flammable things away from my experiment and will also use tongues or tweezers to pick the squash ball out of the heated water to avoid burning my hands. Finally I will remove all obstacles around my experiment such as chairs and bags to avoid people tripping up and accidentally injuring themselves.

Bibliography

Teachers – Mrs Karadia/Mr Heath

Textbooks – A level physics (Roger Muncaster)

                     Physics One

Websites – squash association website

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Investigating the relationship between drop height and bounce height when a ball is dropped.

    into consideration as each one could have an effect on the investigation and we only want to change one of these factors to make it a fair test. We would also like to keep the calculations nice and simple too, so that the results can easily be plotted onto graphs

  2. How does the height a tennis ball bounce depend on the height the ball ...

    The only key factor to vary is the height the ball is droped from. The tennis ball will be dropped from heights of 10cm, 20cm, 30cm, 40cm, 50cm, 60cm, 70cm, 80cm, 90cm, 100cm, 110cm, 120cm, 130cm, 140cm and 150cm. Each height will be repeated 3 times and an average will be taken to ensure accurate results.

  1. Investigating the Percentage Energy Loss When a Ball Bounces

    This is also the relationship between potential energy and kinetic energy. Because some of the energy will be transferred into non-useful energy, mainly heat and sound, I do no think the ball will bounce up to the same height as it is dropped from.

  2. The Bouncing Ball Experiment

    Sometimes, readings are read wrong due to bad eyesight, and there is no way for this error to be found. These problems cannot be fully controlled with the equipment available but steps can be taken to avoid them. This is why the same person reads the bounce height off the

  1. Investigate the correlation between the height at which a ball is dropped and the ...

    Choosing a suitable range and testing methodology Two metre rules were taped at a 90� angle to the wall. A ping-pong ball was then dropped from a range of heights, from 10cm to 120cm, with a 10cm difference between each height.

  2. physics of the bouncing ball

    There were three exceptions to this. The heavy rubber ball, the rounder ball and the plastic mesh ball did not bounce higher than 50cm. This will be because there mass is so high that the majority of the gravitational potential energy is lost upon impact and through resistance such as air and friction.

  1. Converting gravitational potential energy into kinetic energy.

    of the runway instead of releasing it from rest in contact with the runway floor. Either of these reasons would have provided more energy for the ball bearing to roll down faster therefore it gained more kinetic energy than it did in other measurements when it was released from the top of the runway.

  2. How temperature affects the bounce height of a squash ball.

    There was a little friction on the bounce surface as it was not smooth. Energy was lost ion the form of heat and sound energy. The squash ball did not bounce back to its drop height because energy was lost as heat and sound energy.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work