• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To see the effect Osmosis has on a potato chip after a certain time in different concentrations of water; these include: distilled water and 0.2M, 0.4M, 0.6M, 0.8M and 1.0M sucrose solutions.

Extracts from this document...


Results Solution Test 1 Test 2 Test 3 Average Difference (g) Mass Before (g) Mass After (g) Difference (g) Mass Before (g) Mass After (g) Difference (g) Mass Before (g) Mass After (g) Difference (g) Distilled Water 1.98 2.43 +0.45 1.61 1.98 +0.37 2.08 2.51 +0.43 +0.417 0.2M sucrose 1.61 1.71 +0.1 1.93 2.05 +0.12 1.51 1.64 +0.13 +0.117 0.4M sucrose 1.81 1.67 -0.14 1.51 1.43 -0.08 1.41 *N/A* N/A -0.073 0.6M sucrose 1.67 1.73 +0.06 2.04 2.08 +0.04 1.81 1.46 -0.35 -0.083 0.8M sucrose 1.66 1.19 -0.47 1.61 1.17 -0.44 1.74 1.27 -0.47 -0.46 1.0M sucrose 1.94 1.39 -0.55 1.53 1.16 -0.37 1.43 1.08 -0.35 -0.423 Investigation to see the effects of Osmosis - Matthew Voss Aim To see the effect Osmosis has on a potato chip after a certain time in different concentrations of water; these include: distilled water and 0.2M, 0.4M, 0.6M, 0.8M and 1.0M sucrose solutions. Prediction Osmosis is defined as the passing of water from a high concentration to a lower one through a semi-permeable layer, in an attempt to try and even out a water concentration. Here is an example of water passing across the concentration gradient: To prove the theory of Osmosis we are using chips of the vegetable potato. Plants naturally have semi-permeable skins to allow the passage of water and each plant cell has a vacuole, which is used to store water. ...read more.


Then averages all three of the results, this will give a more even picture of what's happening, try and ignore any anomalous results, as they tend to interfere with the averages. This proves that osmosis exists: the passing of water through a semi-permeable layer. Summary In summary I predict that the potatoes exposed to higher concentrations will loose the most water thus decreasing most in mass and those exposed to the lower concentrations will not shrink and may even grow in mass. Here is a diagram to show how the potato's plant cells would react in a high concentration. Analysis of Evidence From my table and my graph I can see that there is a negative correlation in the way that the average difference in mass of the potato chip gets smaller and smaller. The line of best fit on my graph travels negatively down the graph proving there is a correlation between sucrose solution water and change in mass of potato. This means that the higher the molar of sugar concentration in water, the smaller the difference in mass. Even to the extent where the potato chip actually gets smaller in mass than before it was put in the solution. This means that my prediction was correct in the way that I said the potato would grown in low concentrations and shrink in high ones. ...read more.


The electronic scales we used were extremely accurate, recording mass in grams to 2 decimal places. In summary this experiment isn't very accurate compared to it being done in better-controlled conditions, such as a university laboratory. On a whole I think the experiment was suitable as it properly showed how osmosis worked across a concentration gradient (ignoring the anomalous results). In general it would be useful for other science groups to do the same experiment to find evidence of osmosis and I encourage teaches use this experiment as an example. There are several improvements that could be made to the experiment, for example: if I were to do this experiment again I would use more exact equipment, such as burettes for measuring out the solution. I would also design a set time to leave the experiment instead of roughly estimating two days like we had to because of social limitations. To create a more detailed graph I would use more concentrations of water, such as 0.3, 0.5, 0.7, 0.9 as well as the original concentrations. Also I would do higher concentrations as to find the exact point of total saturation of the potato. In summary we managed to prove the existence of osmosis and how it changes under different concentrations. The main idea of this experiment was to prove that water will attempt to even out concentrations of itself to create an equilibrium and I think we did this. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Life Processes & Cells section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Life Processes & Cells essays

  1. Osmosis is defined as 'the movement of water molecules from an area of high ...

    Also while using scalpels everyone will have to wear safety goggles. My experiment is not experimenting the how permeable the membranes are, but it is testing the rate of osmosis with different solutions. We also know that diffusion of water will occur from a lower concentration of solute to a higher concentration of solute.

  2. The effects of different concentrations of sucrose on potatoes

    in the water itself, to a low concentration, i.e. in the potato chip. Therefore, the chips in higher water concentrations will have a larger mass than in higher sugar concentrations. The diagram below shows osmosis taking place. At school we carried out a preliminary experiment where we done this experiment.

  1. Find out if osmosis occurs in a potato, and how it affect the potato ...

    We will repeat the experiment three times so that we can make sure that all our results are similar, and so that we will be able to take the average of the 3 experiments. This makes sure that we get accurate results.

  2. Finding out the effect of osmosis on potato chips at different concentrations of sucrose ...

    The smaller the concentration of water in the external solution the greater the amount of water that leaves the cell. However, there will be a point where the concentrations of water inside and outside the potato cells are equal (isotonic).

  1. Osmosis in potatoes at different concentrations of sucrose solutions.

    The weight before the experiment was 3.52 grams and after the experiment, it dropped to 2.6 grams. Also, I thought that the weight might also change during the experiment because water has its own weight and density. So if water moved out of the chip, there could be mass decrease and vise versa.

  2. The Chip Problem

    Overall my results and the graphs show a general trend that at higher molar solutions the chips are placed into they will loose water and as the molar of the solution falls the amount of change is less until they do not change at all around 0.25 molar solution but at 0M solution distilled water they gain weight and size.

  1. Investigating the effect of different concentrations of sucrose solutions on potato tuber cells.

    0.2 molar- The potato chips in the 0.2M sugar solution will increase in length and mass because the sugar solution will be more dilute that the solution inside the potato causing water to move into the potato through osmosis and the potato to grow in length and mass and the cells inside the potato to become turgid.

  2. Investigate the effects of varying concentration of certain solutions on the amount of osmosis ...

    * Size of potato chips - the mass of the potato should be measured throughout the experiment, and should be measured in Grams. The potato chip will be measured before and after it is put into the solution. This will allow me to see whether osmosis has occurred and to what extent.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work