• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Trolly Experiment

Extracts from this document...

Introduction

Data Analysis Coursework

I am going to investigate the relationship between the velocity of a moving object, and the distance it travels down a ramp, using secondary data obtained by a class experiment.

image00.png

The apparatus was set up as shown above and illustrates a runaway vehicle down a hill. The light gate was placed at several points along the slope and measured the velocity of the card passing through it.

The trolley, of mass 1000g (1kg), was released 126cm up the slope from front of the card. The palm top then measured the time it took for the whole piece of card to pass through the light gate.

Once this was done the light gate was moved down the slope by 10cm at a time and again recorded the time it took for the card to pass through the light gate. This was carried out for 8 different locations. Each location’s time was repeated to end up with 3 readings. The average of these could then be taken and used as the time it took for the card to pass through the light gate.

To reduce the fiction of the wheel axis on the trolley, I have sprayed it with a lubricant (WD40).

The results I have been given are as follows:

Distance to Light Gate (m)

Velocity (m/s)

1st go

2nd go

3rd go

Mean Velocity

0.8

0.565

0.556

0.556

0.559

0.7

0.532

0.518

0.525

0.525

0.6

0.487

0.484

0.481

0.484

0.5

0.449

0.436

0.437

0.441

0.4

0.395

0.390

0.393

0.393

0.3

0.339

0.338

0.339

0.339

0.2

0.277

0.277

0.274

0.276

0.1

0.186

0.191

0.190

0.189

I have decided to make a preliminary graph to show my expected results.

image05.png

The graph above shows that as the slope distance increases the velocity of the trolley must increase.

...read more.

Middle

As well as this I can use Newton’s Second Law to Model the Particle, in order to find out friction etc.

Newton’s second law states, ‘The Force, F, applied to a particle is proportional to the mass, m, of the particle and the acceleration produced.’

This can then be represented by the equation F = ma.

In order to model the trolley I must know the acceleration. I will therefore use the SUVAT equations first.

Firstly, I shall work out is the time that the trolley took to reach the light gate by rearranging the equation:

                s = ½ (v + u)t

Therefore         2s = (v + u)t

                t = 2s / v                        (as initial velocity is always zero)

Therefore for the 0.1m light gate the trolley takes:

                t = 0.2 / 0.189

                t = 1.06s

I can now do this for all the other light gate positions also.

I can now work out the acceleration of the trolley through the light gate by using the formula:

                a = (v – u) / t

For the 0.1m light gate:

                a = 0.189 / 1.06 (because u = 0)

                a = 0.179ms-2

I will now apply this equation for all the other light gate positions.

Now that I have acceleration for the trolley I can model it going down a slope and find out the model acceleration. This value can then be subtracted from the actual value to give resistance to the path of the trolley.

This is the simplified right-angle triangle from the diagram on the page before. This will make it easier to see what is happening.

image01.png

The angle theta (θ)

...read more.

Conclusion

Graph 3:        Graph showing how the Kinetic Energy of the trolley changes as it goes down the slope.

The graph shows as that as the trolley goes further down the slope, its kinetic energy increases. This is very easy to explain in that as it moves down the slope it picks up more speed. The equation for kinetic energy is k.e. = ½mv2. The mass of the particle does not change and so the rise in kinetic energy is solely due to the trolley increasing in speed. When it is higher up the slope, it has more gravitational potential energy so it cannot posses as much kinetic. Lower down the slope it has less G.p.e. so it can posses more k.e.

Graph 4:        Graph to show how the Gravitational Potential Energy of the trolley changes as it goes down the slope.

The graph shows that as the trolley travels further down the slope it has less gravitational potential energy. This is also easy to explain in that when it is at the top of the ramp it has more height. Since G.p.e. = mgh, the more height it has the more G.p.e. it shall have. As it moves down the slope it is not as high up, so it has less G.p.e.

Graph 5:        Comparing G.p.e. with k.e.

This graph basically illustrates the connection between G.p.e. and k.e. It shows that when one increases the other must decrease. Using this graph and plotting interpolation lines and then using the G.p.e. against distance graph one can work out the position of the trolley at a given location. image04.pngimage04.png

...read more.

This student written piece of work is one of many that can be found in our GCSE Forces and Motion section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Forces and Motion essays

  1. Marked by a teacher

    Investigate the relationship between GPE (Gravitational Potential Energy) and KE (Kinetic Energy) for a ...

    3 star(s)

    Interrupt Card To make sure I got accurate and reliable readings I used a Data Logger to record the time, because it times to the nearest 100th of a milliseconds. I also used a light gate so there was no possibility of human error.

  2. What affects the acceleration of a trolley down a ramp?

    There were some anomalous results, however. For example the result for height 45cm on the velocity graph clearly doesn't fit in with the others. The speed is much faster than it should be. This could be because of a decrease in friction.

  1. Investigating the Factors Which Affect the Motion of a Trolley Down an Inclined Plane

    Once the apparatus is set up like this, we will switch the Ticker Tape Timer on and release the trolley so that it can accelerate down the ramp. I will measure its speed from the very point it starts for two metres.

  2. Factors Affecting the Speed of a Car after Freewheeling down a Slope

    The trolley was placed at the top of the runway and released when the ticker timer was started. 4. The ticker timer was stopped when the trolley was stopped at the end of the flat ramp. 5. The tape was removed and measured from the start of the regular

  1. In this experiment I aim to find out how the force and mass affect ...

    For this reason, I am using a plastic ramp. This is much more accurate than me timing the ball. I will take three readings, and in the end take the average. I will then work out the final velocity by using the formula below. I will take three readings, and in the end take the average.

  2. To investigate the effect of different forces on the acceleration of a trolley.

    In the international system of units, the unit of force is the Newton, which is the force that imparts to an object with a mass of 1 kg an acceleration of 1 m/sec2. Acceleration tells you how quickly an object increases in speed.

  1. Motion of an object as it slides down a slope at different angles to ...

    Ignoring friction and air resistance as assumed, the forces working on the particle while it is sliding is only its own weight: P = mg sin?, where m is the mass, g is the acceleration due to gravity, taken as 9.8 According to Newton's Second Law P = ma, where

  2. Speed Of trolley

    If the surface of the runway is rough then the trolley will travel slower due to friction between them. The trolley will travel slower if the surface of the runway is rough. This is because friction is higher in rough surfaces than it is in smooth surfaces.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work