• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

We are investigating how the current flow through a wire, which is part of an electrical circuit, can be altered. In doing this the resistance of the wire will be measured.

Extracts from this document...

Introduction

image00.png

Introduction

We are investigating how the current flow through a wire, which is part of an electrical circuit, can be altered. In doing this the resistance of the wire will be measured. It’s an extension of earlier GCSE work using cells, lamps, ammeter, voltmeter and variable resistors.

There are two types of circuits, series and parallel. In class experiments we found out that for:

  • Series circuits- more lamps in series, the lamps become dimmer and the current flow through them becomes less.
  • Parallel circuits- more lamps in parallel, the lamps remain equally bright and the total current splits equally between each branch of the circuit.

Something has happened to the resistance in each type of circuit.

Series circuit = More lamps = More resistance = Less current.

Parallel circuit =More lamps = More current = Less resistance.

This is because as the resistance of the lamp increases, the temperature of the filament wire also increases; therefore the particles in the wire vibrate more and make it harder for the electrons to pass through.

Background Information

The and materials I have used are:

Class notes

AQA GCSE science

CGP GCSE physics

Prediction

...read more.

Middle

image01.png

0.7

image02.png

0.09

0.15

0.20

0.30

0.30

0.28

0.29

20

0.16

0.26

0.37

0.52

0.52

0.52

0.52

30

0.23

0.38

0.53

0.76

0.76

0.76

0.70

40

0.29

0.50

0.70

0.96

1.00

1.00

0.98

50

0.37

0.62

0.86

1.23

1.24

1.22

1.23

60

0.44

0.73

1.02

1.46

1.46

1.45

1.43

70

0.58

0.98

1.37

1.93

1.96

1.95

1.94

80

0.65

1.09

1.53

2.16

2.18

1.70

2.01

90

0.67

1.12

1.56

2.23

2.24

2.28

2.25

100

0.73

1.23

1.68

2.43

2.46

2.40

2.47

Material

Length of wire (cm)

Current

  A      B        C

Voltage

  A        B       C

Resistance

  A        B       C

Average

image01.png

28 swgimage02.png

10

image01.png

0.3

image02.png

image01.png

0.5image02.png

image01.png

0.7

image02.png

0.17

0.27

0.41

0.56

0.54

0.58

0.56

20

0.32

0.53

0.73

1.06

1.06

1.04

1.05

30

0.45

0.76

1.07

1.50

1.52

1.52

1.57

40

0.55

0.93

1.29

1.83

1.86

1.43

1.70

50

0.69

1.15

1.61

2.30

2.30

2.30

2.30

60

0.83

1.38

1.93

2.76

2.76

2.76

2.76

70

0.83

1.42

1.96

2.76

2.84

2.80

2.80

80

0.98

1.66

2.38

3.26

3.32

3.37

3.32

90

1.25

2.12

2.94

4.18

4.24

4.20

4.20

100

1.42

2.53

3.29

4.73

4.66

4.70

4.69

Material

Length of wire (cm)

Current

  A        B       C

Voltage

...read more.

Conclusion

Evaluation

After doing this experiment, I have come up with a reliable set of results.

Even though I have achieved a good set of results there are obviously going to be errors, which I have made that could affect the investigation. The errors that I came across were, the wire was very hard to get straight and had bends, the voltmeter was only accurate to two decimal places so the voltage was flickering which made it hard to tell what the exact number was. To make my accuracy better we could have done more than ten lengths, done each result more than three times, used ammeter and voltmeter sensor. We could also have used different cross sectional areas or use different materials.

I think my graph was good to look at but there are still one or two anomalous results which could have been caused by accuracy measuring instruments which we could have improved.

To support my conclusion I could do some extra work like testing more materials to see what other materials it would work with. We could test more length to see if the graph will rise in proportion or will there be a point where the graph will bend and the resistance will not go any higher.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    Also I predicted that, if I doubled the amount of turns in the coil on the core, the strength of the electromagnet will also double, I would then find out if this was true from the weight it was capable of holding.

  2. Free essay

    How the length of constantan wire affects the ressistance in a electrical circuit

    However if longer wires do no not have a high resistance the plots on the graph would have been everywhere and it would have been a negative correlation. I have taken notice in most the graphs that when results of the voltmeter increases the current in the ammeter decreases.

  1. Investigating The Characteristics Of A Filament Lamp

    Cross-sectional area of the filament ii.) Material type of the filament iii.) Length of the filament iv.) Voltage flowing through the circuit *NB: As the voltage is increased during the course of the investigation, more current will flow through the wire, causing the temperature to increase.

  2. Investigating Resistance in an electrical circuit

    Copper has a low resistance and is the most efficient after silver. Materials with high resistances have their purposes in some electrical circuits too. Nichrome (an alloy of 80% Nickel and 20% Chromium) is often used as a heating element in electrical devices.

  1. Physical - Circuit

    With the length of 20cm, this might because of the ammeter have some problem while we're measuring. I believe if we have a chance to retry it over again, we should get better results as what we have expected. Table 4: This table shows about the normal wires used in

  2. Investigate how resistance can affect the amount of current flow.

    flowing across the material. A material of high resistivity will require a higher electrical field to cause a given current density. If the resistivity of a material is known, as well as its dimensions, it can be used to calculate the resistance of a particular piece of material.

  1. Determining Voltage, Resistance and Current in a Parallel, Series and Series-Parallel Circuit.

    2 by attaching the red cable to red and black cable to black. 2. Measure the current in the series circuit by switching off and on the power supply and connecting the multimeter to the cables as show in the diagram below.

  2. Aim: I am going to carry out an investigation to find how the resistance ...

    electrons will instantly begin to move through the wire in the same direction (towards the positively charged end) this is an electric current, a current is the flow of charge in a wire or the movement of the negatively charged electrons through the wire.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work