• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

We are investigating how the current flow through a wire, which is part of an electrical circuit, can be altered. In doing this the resistance of the wire will be measured.

Extracts from this document...

Introduction

image00.png

Introduction

We are investigating how the current flow through a wire, which is part of an electrical circuit, can be altered. In doing this the resistance of the wire will be measured. It’s an extension of earlier GCSE work using cells, lamps, ammeter, voltmeter and variable resistors.

There are two types of circuits, series and parallel. In class experiments we found out that for:

  • Series circuits- more lamps in series, the lamps become dimmer and the current flow through them becomes less.
  • Parallel circuits- more lamps in parallel, the lamps remain equally bright and the total current splits equally between each branch of the circuit.

Something has happened to the resistance in each type of circuit.

Series circuit = More lamps = More resistance = Less current.

Parallel circuit =More lamps = More current = Less resistance.

This is because as the resistance of the lamp increases, the temperature of the filament wire also increases; therefore the particles in the wire vibrate more and make it harder for the electrons to pass through.

Background Information

The and materials I have used are:

Class notes

AQA GCSE science

CGP GCSE physics

Prediction

...read more.

Middle

image01.png

0.7

image02.png

0.09

0.15

0.20

0.30

0.30

0.28

0.29

20

0.16

0.26

0.37

0.52

0.52

0.52

0.52

30

0.23

0.38

0.53

0.76

0.76

0.76

0.70

40

0.29

0.50

0.70

0.96

1.00

1.00

0.98

50

0.37

0.62

0.86

1.23

1.24

1.22

1.23

60

0.44

0.73

1.02

1.46

1.46

1.45

1.43

70

0.58

0.98

1.37

1.93

1.96

1.95

1.94

80

0.65

1.09

1.53

2.16

2.18

1.70

2.01

90

0.67

1.12

1.56

2.23

2.24

2.28

2.25

100

0.73

1.23

1.68

2.43

2.46

2.40

2.47

Material

Length of wire (cm)

Current

  A      B        C

Voltage

  A        B       C

Resistance

  A        B       C

Average

image01.png

28 swgimage02.png

10

image01.png

0.3

image02.png

image01.png

0.5image02.png

image01.png

0.7

image02.png

0.17

0.27

0.41

0.56

0.54

0.58

0.56

20

0.32

0.53

0.73

1.06

1.06

1.04

1.05

30

0.45

0.76

1.07

1.50

1.52

1.52

1.57

40

0.55

0.93

1.29

1.83

1.86

1.43

1.70

50

0.69

1.15

1.61

2.30

2.30

2.30

2.30

60

0.83

1.38

1.93

2.76

2.76

2.76

2.76

70

0.83

1.42

1.96

2.76

2.84

2.80

2.80

80

0.98

1.66

2.38

3.26

3.32

3.37

3.32

90

1.25

2.12

2.94

4.18

4.24

4.20

4.20

100

1.42

2.53

3.29

4.73

4.66

4.70

4.69

Material

Length of wire (cm)

Current

  A        B       C

Voltage

...read more.

Conclusion

Evaluation

After doing this experiment, I have come up with a reliable set of results.

Even though I have achieved a good set of results there are obviously going to be errors, which I have made that could affect the investigation. The errors that I came across were, the wire was very hard to get straight and had bends, the voltmeter was only accurate to two decimal places so the voltage was flickering which made it hard to tell what the exact number was. To make my accuracy better we could have done more than ten lengths, done each result more than three times, used ammeter and voltmeter sensor. We could also have used different cross sectional areas or use different materials.

I think my graph was good to look at but there are still one or two anomalous results which could have been caused by accuracy measuring instruments which we could have improved.

To support my conclusion I could do some extra work like testing more materials to see what other materials it would work with. We could test more length to see if the graph will rise in proportion or will there be a point where the graph will bend and the resistance will not go any higher.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    These forces combined and together they made the magnet stronger. This is how I received my results, my results from the graph and the theory link and show me that the more coils there are on an electromagnet the stronger it will be.

  2. Free essay

    How the length of constantan wire affects the ressistance in a electrical circuit

    not clogged up * Most importantly do not increase the voltage of the power pack excessively as the wire will and your safety is in harm How did I ensure a fair test?

  1. Investigating The Characteristics Of A Filament Lamp

    A conclusion can be drawn by analysing graphs of the results recorded and comparing the graph with the typical 'filament lamp' graph. The more similar the graphs collected from the results are to the typical filament lamp graph, the more accurate the experiment has been.

  2. Investigating Resistance in an electrical circuit

    Copper has a low resistance and is the most efficient after silver. Materials with high resistances have their purposes in some electrical circuits too. Nichrome (an alloy of 80% Nickel and 20% Chromium) is often used as a heating element in electrical devices.

  1. Physical - Circuit

    Voltage (Volts) Current (amps) Resistance (?) 5 0.13 2.5 0.052 10 0.13 1.8 0.0722 15 0.17 1.77 0.0960 20 0.18 1.73 0.1040 25 0.3 1.7 0.1765 30 0.37 1.7 0.2176 In this table, I can see that the resistance weren't stable.

  2. Investigation on Photovoltaic Cells

    wider scale I should of recorded results up to a larger surface area to see if the results continued to stay level. I believe that my results were fairly accurate as I marked a spot of the desk to ensure that the solar cell went back in the same place.

  1. Determining Voltage, Resistance and Current in a Parallel, Series and Series-Parallel Circuit.

    2 by attaching the red cable to red and black cable to black. 2. Measure the current in the series circuit by switching off and on the power supply and connecting the multimeter to the cables as show in the diagram below.

  2. Aim: I am going to carry out an investigation to find how the resistance ...

    The electrons move like this because of the voltage (energy/ power) which ?pushes? the current around the circuit. The energy is transferred from the power pack to the electrons that will equally share and give out the energy to each component in the circuit.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work