• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

We are investigating how the current flow through a wire, which is part of an electrical circuit, can be altered. In doing this the resistance of the wire will be measured.

Extracts from this document...

Introduction

image00.png

Introduction

We are investigating how the current flow through a wire, which is part of an electrical circuit, can be altered. In doing this the resistance of the wire will be measured. It’s an extension of earlier GCSE work using cells, lamps, ammeter, voltmeter and variable resistors.

There are two types of circuits, series and parallel. In class experiments we found out that for:

  • Series circuits- more lamps in series, the lamps become dimmer and the current flow through them becomes less.
  • Parallel circuits- more lamps in parallel, the lamps remain equally bright and the total current splits equally between each branch of the circuit.

Something has happened to the resistance in each type of circuit.

Series circuit = More lamps = More resistance = Less current.

Parallel circuit =More lamps = More current = Less resistance.

This is because as the resistance of the lamp increases, the temperature of the filament wire also increases; therefore the particles in the wire vibrate more and make it harder for the electrons to pass through.

Background Information

The and materials I have used are:

Class notes

AQA GCSE science

CGP GCSE physics

Prediction

...read more.

Middle

image01.png

0.7

image02.png

0.09

0.15

0.20

0.30

0.30

0.28

0.29

20

0.16

0.26

0.37

0.52

0.52

0.52

0.52

30

0.23

0.38

0.53

0.76

0.76

0.76

0.70

40

0.29

0.50

0.70

0.96

1.00

1.00

0.98

50

0.37

0.62

0.86

1.23

1.24

1.22

1.23

60

0.44

0.73

1.02

1.46

1.46

1.45

1.43

70

0.58

0.98

1.37

1.93

1.96

1.95

1.94

80

0.65

1.09

1.53

2.16

2.18

1.70

2.01

90

0.67

1.12

1.56

2.23

2.24

2.28

2.25

100

0.73

1.23

1.68

2.43

2.46

2.40

2.47

Material

Length of wire (cm)

Current

  A      B        C

Voltage

  A        B       C

Resistance

  A        B       C

Average

image01.png

28 swgimage02.png

10

image01.png

0.3

image02.png

image01.png

0.5image02.png

image01.png

0.7

image02.png

0.17

0.27

0.41

0.56

0.54

0.58

0.56

20

0.32

0.53

0.73

1.06

1.06

1.04

1.05

30

0.45

0.76

1.07

1.50

1.52

1.52

1.57

40

0.55

0.93

1.29

1.83

1.86

1.43

1.70

50

0.69

1.15

1.61

2.30

2.30

2.30

2.30

60

0.83

1.38

1.93

2.76

2.76

2.76

2.76

70

0.83

1.42

1.96

2.76

2.84

2.80

2.80

80

0.98

1.66

2.38

3.26

3.32

3.37

3.32

90

1.25

2.12

2.94

4.18

4.24

4.20

4.20

100

1.42

2.53

3.29

4.73

4.66

4.70

4.69

Material

Length of wire (cm)

Current

  A        B       C

Voltage

...read more.

Conclusion

Evaluation

After doing this experiment, I have come up with a reliable set of results.

Even though I have achieved a good set of results there are obviously going to be errors, which I have made that could affect the investigation. The errors that I came across were, the wire was very hard to get straight and had bends, the voltmeter was only accurate to two decimal places so the voltage was flickering which made it hard to tell what the exact number was. To make my accuracy better we could have done more than ten lengths, done each result more than three times, used ammeter and voltmeter sensor. We could also have used different cross sectional areas or use different materials.

I think my graph was good to look at but there are still one or two anomalous results which could have been caused by accuracy measuring instruments which we could have improved.

To support my conclusion I could do some extra work like testing more materials to see what other materials it would work with. We could test more length to see if the graph will rise in proportion or will there be a point where the graph will bend and the resistance will not go any higher.

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Electromagnetism - investigating what effect increasing the number of turns in a coil on ...

    I feel I have received these results because, in a piece of iron that is unmagnetised, the domains will all point in different directions. As they are doing this there is no true north seeking or south-seeking pole in the piece of iron as the domains cancel each other out, therefore the piece of iron will remain unmagnetised.

  2. Free essay

    How the length of constantan wire affects the ressistance in a electrical circuit

    I had to change the distance in the length of the wire every 10cm to keep the experiment fair until I got my 100cm reading. If the distance increases not only does the resistance increase but so does voltage, however the current decreases during the practical.

  1. Investigating The Characteristics Of A Filament Lamp

    Already during the course of this academic year, I have carried out a number of experiments in class involving different components, such as diodes, although not in as much detail. The circuit diagram used in this experiment could merely be adapted from the other experiments, substituting the previous components for the filament lamp.

  2. Investigating Resistance in an electrical circuit

    Copper has a low resistance and is the most efficient after silver. Materials with high resistances have their purposes in some electrical circuits too. Nichrome (an alloy of 80% Nickel and 20% Chromium) is often used as a heating element in electrical devices.

  1. Investigate how resistance can affect the amount of current flow.

    Each material has a characteristic resistance. For example, wood is a bad conductor because it offers high resistance to the current; copper is a better conductor because it offers less resistance. In any electric circuit, the current in the entire circuit is equal to the voltage across that circuit divided by the resistance of the circuit.

  2. Physical - Circuit

    When we test the copper wire of 100cm long with 0.9mm diameter into water, it have a results of room temperature with low resistance, when the water were starting to boil, the current and the voltage both raise, and the resistance also raise with 0.5ohms.

  1. Determining Voltage, Resistance and Current in a Parallel, Series and Series-Parallel Circuit.

    2 by attaching the red cable to red and black cable to black. 2. Measure the current in the series circuit by switching off and on the power supply and connecting the multimeter to the cables as show in the diagram below.

  2. Aim: I am going to carry out an investigation to find how the resistance ...

    By the time the electron has reached the end of the circuit it will have lost all the energy it will have in gained at the start (energy will be lost through components and resistance.) Resistance is the opposition that the electrons will experience while flowing through the wire.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work