• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10

What affects the rate of photosynthesis in Elodea?

Extracts from this document...

Introduction

Biology Coursework What affects the rate of photosynthesis in Elodea? Aim: To find out which factors affect the rate of photosynthesis in Elodea. Variables: The variables that might affect the rate of photosynthesis in this experiment are: Temperature: When the temperature rises so does the rate of photosynthesis; this is because as the temperature around the plant rises the enzymes controlling photosynthesis inside the chloroplasts heat up and start moving around faster, the fast moving molecules collide with other fast moving enzymes causing them to react. The rate of diffusion of carbon dioxide into the leaves will also ride as temperature does. This happens because fast moving carbon dioxide molecules will hit the surface of the leaf far more often than in a colder atmosphere therefore more molecules will be taken into the leaf and diffusion will happen faster. However, the rate of photosynthesis will only keep on rising until the temperature reaches 45'c at that temperature the enzymes in the chlorophyll will be destroyed and photosynthesis will stop all together. On the other hand, if the temperature is too cold then temperature will become the limiting factor and the enzymes will stop working. Carbon dioxide: The amount of carbon dioxide in the atmosphere around the elodea affects the rate at which it will photosynthesise. The plant needs carbon dioxide to react with water molecules to make glucose. If there isn't enough carbon dioxide for the plant to take in the plant wouldn't have enough glucose or food and would die. ...read more.

Middle

The ruler needs to be straight from the boiling tube to the lamp. I will attach a paper clip firmly to the end of my elodea and place my piece of elodea into the boiling tube I will carefully cut the end of my elodea using a pair of scissors, making sure that it is kept under the water at all times. To make sure that the light intensity is entirely controlled by me I will turn off all the room lights and cut off any other major light sources. When my experiment is set up correctly I will make sure my lamp is lined up at 10 cm and turn it and the stop watch on at exactly the same time. I will then time the 2 minutes whilst counting the bubbles carefully and recording the measurements and the number of bubbles per 2 minutes. I will repeat this experiment 6 times changing nothing but the distance the light is away from the Elodea. The distances will be 10cm 20cm 30cm 40cm 50cm 60cm 70cm and 80cm. To get more accurate results I will repeat the experiment 3 times if possible Predictions: Using my scientific knowledge and the research that I have been doing I would predict that light intensity will affect the rate of photosynthesis in this way: The closer the lamp is to the elodea the stronger the light intensity will be, I know this because we have being doing tests to measure the light intensity using specialist equipment. Our findings from this are that the brighter the light or the closer the light, the stronger the light intensity. ...read more.

Conclusion

It is more likely that the similar anomalies results are due to faults the equipment that was used because we used exactly the same equipment each time. It could also be due to light coming from other sources to our experiment causing the rate of photosynthesis to rise with the light coming in though I do not know however how this could have happened in all 3 experiments. My prediction was fairly similar to the results that I got from my investigation. Conclusion Although there is a clear pattern in my experiment, as I have mentioned before, the evidence I obtained hasn't corresponded with research and other sources of information that has been found. This makes me uncertain of how accurate my results are and therefore causes me to think that the results that I have obtained are not exact enough to prove my hypothesis. The experiment was simply not carried out with enough attention to detail. This experiment could most defiantly be improved. More elodea in a larger water holder would have been better and produce many more bubbles and getting better results. The light could have been a lot brighter so, again, we would get more bubbles, and also the range of distance of which we measured could be increased. For further results, we could have tested how temperature affected the plants along with testing how carbon dioxide levels affected photosynthesis. We would achieve temperature with usage of electric heaters and thermometers and carbon dioxide by putting bottles over the plant. In summary, this whole experiment could and should have been redone, we more care, thought and better equipment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Green Plants as Organisms section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Green Plants as Organisms essays

  1. Investigating the effect of Light Intensity on Elodea.

    The collision theory can be used to explain why the reaction is speeded up when more energy is available. All atoms have kinetic energy, these atoms move, colliding with each other. When they collide the activation energy must be enough to let the particles react.

  2. Experiment to Investigate the Effect of Temperature on the Rate of Photosynthesis in Elodea.

    and cellulose, or are converted to acetylcoenzyme A to make amino acids and lipids, to be used for other functions within the plant. Other triose phosphate molecules regenerate RuBP. This stage is usually called the Calvin cycle, which is shown below: The reason why temperature has any effect on the rate of photosynthesis is due to enzyme action.

  1. Effects of temperature and carbon dioxide on photosynthetic rate in Elodea.

    These other factors do not immediately limit the rate of photosynthesis but rather gradually. As light intensity increases the photosynthetic rate is being limited by certain factors such as carbon dioxide and temperature. As light intensity increases further, these factors limit the rate of photosynthesis even more until photosynthesis is completely limited and the graphed line become horizontal.

  2. This experiment involves using a photosynthometer to investigate how temperature affects the rate of ...

    In reality, the rubisco protein chains completely surround these molecules. The magnesium ion is held tightly by three amino acids, including a surprising modified form of lysine. An extra carbon dioxide molecule is attached firmly to the end of the lysine side chain.

  1. Investigating the effect of temperature on the rate of photosynthesis

    The square root of the figure calculated in step 5 = 3.475145052 7. The difference between the two means (step 2) divided by the figure calculated in step 6 = 29.34384615 = 8.443919812. 3.475145052 8. 8.44 is greater than the critical value of t, which for of 24 degrees of freedom equals 2.06.

  2. How temperature affects the rate of photosynthesis.

    But a temperature higher than 40 degrees can denature them, and the enzymes can stop functioning. Oxygen is the only measurable product of photolysis, and the release of oxygen depends on the enzyme controlled photolysis of water. So temperature affects the functioning of enzymes and therefore the rate at which oxygen is produced during the light stage of photosynthesis.

  1. INVESTIGATING HOW TEMPERATURE AFFECTS THE

    and is in the same position all the time which will give far more accurate measurements of absorbency than interpreting using a scale. Cuvettes are designed to be optically identical to each other. Many have a small mark on them so you can make sure the same faces are always lined up with the light source and sensor.

  2. Investigation To Find The Effect Of Temperature On The Rate Of Photosynthesis Of Elodea.

    We changed the independent variable (temperature) by changing the temperature of the water. A thermometer was used to measure the temperature of the water. We changed the temperature of water by either adding hot water to warm it up or adding ice to cool it down.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work