• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

What Factors Affect How High a Ping-Pong Ball Bounces?

Extracts from this document...


Rebecca Johnson 11TD What Factors Affect How High a Ping-Pong Ball Bounces? Aim-To investigate what factors affect how high a ping-pong ball bounces. Introduction The main factors that will affect how high a ping-pong ball bounces are, * Height of drop * Pressure of air in ball * Type of surface * Mass of ball * Angle of surface * Material of surface * Material of ball * Diameter of ball * Acceleration due to gravity * Temperature of ball I have decided to vary the height from which the ping-pong ball is dropped. Once I have collected all of my results I will work out the amount of GPE for each height using the equation, Gravitational potential energy (J) = mass (Kg) x gravitational field strength (N/Kg) x vertical height (m) GPE = m x g x h The gravitational field strength is always constant at 10m/s2 (or to be precise 9.82 m/s2 ). I will then work out the kinetic energy using the equation, Kinetic energy (J) = 1/2 x mass (Kg) x velocity2 (m/s2) Ke = 1/2 m x v2 Equipment list In order to make the experiment run smoothly I will make an equipment list. ...read more.


Then just before impact the person has only kinetic energy left as the potential energy has all been converted. The diagram below shows all of this information in its simplest form. Using this diagram I can see that: Gravitational Potential Energy = Kinetic Energy Using the diagram and the theory, 'As the height from which the ball is dropped increases, the more potential energy which will be converted into kinetic energy', I can say that the ball will hit the bench faster; therefore less energy will be transformed to sound and heat and consequently the bounce will be bigger. Accordingly I predict that, Increase in the height from which the ball is dropped = Increase in the height of bounce As a result of my prediction I think that my graph will look like this: Results Height of Drop (cm) Height Ball Bounces (cm) Averages (cm) Experiment 1 Experiment 2 Experiment 3 Drop no. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 50 37 36 37 36 36 38 36 36 37 36 35 36 37 39 38 37 60 42 42 40 41 42 44 44 43 45 42 45 45 42 44 42 43 70 48 46 ...read more.


The results could have also been affected slightly, because there could have been a crack on the section of the bench where the ball was dropped. I could varnish the bench next time so that there aren't going to be any cracks that are liable to affect the results next time. The ruler that I used as a marker was not as efficient as using a light beam or a video camera, because by using a light beam I would have been able to read off the readings more accurately and with a video camera I could record the experiment and then use pause to freeze the picture and then read off the values. I could extend my investigation further by doing the experiment again, under exactly the same conditions, but this time I would investigate how a different mass of ping-pong ball affects how high it bounces. Even though I haven't varied the mass in this present experiment, by doing this extended investigation I can determine how mass may be another major factor, which might affect how high a ping-pong ball bounces. Accordingly I can progress further in this area of physics and this will help me in my understanding of this subject. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Investigating the relationship between drop height and bounce height when a ball is dropped.

    But since there only a few extreme values, you can cancel them out and take the rest of the appropriate data to create many patterns. For instance in table one you can see from the averages column that the height two of the ball is about twice as great each time you increase the height by 20cm.

  2. Electromagnets - What factors affect strength of an electromagnet?

    Record the number of paperclips picked up 12. Repeat each experiment three times, with different current values to get an average result. Diagram 2, showing the position of the apparatus for experiment two Safety measures Safety is needed during any type of experiment carried out.

  1. Investigate how mass affects the diameter of an impact crater.

    Refer to graph 3. The scatter graph shows positive correlation allowing my prediction to stand true that crater diameter increases with increasing mass. Furthermore I have added a curve of best fit which suggests that crater size increases at a decreasing rate. In order to distribute the recordings further and more importantly notify a

  2. The Bouncing Ball Experiment

    We found where we should stand on the stairs for measuring all the heights from 50cm to 500cm with 50cm gaps in-between each. Next, the ping-pong ball was measured and weighed so that when it came to doing energy calculations relating to kinetic energy or work done (energy transfer), I

  1. Investigate the correlation between the height at which a ball is dropped and the ...

    If the ball is bounced from lower e.g. 10cm, its bounce is so quick that reading off its bounce height will be hard to do, and therefore results will be less accurate. As many heights as time allows must be done, but at least 10 readings are needed to give suitable accuracy.

  2. physics of the bouncing ball

    8.6 9.2 8 7.6 9.2 6.2 6.2 I have carried out a scientific investigation that is designed to prove whether or not the bounce height of a ball is affected by the drop height or the material from which the ball is made.

  1. Investigating the factors that affect a bouncing ball.

    When you set up the apparatus make sure that the stand and clamp are in good condition so that they will not fall and hurt anyone. When you fasten the clamp make sure you do it with your fingers are out of the way or they will get trapped.

  2. Investigation on the factors that affect the bounce of a ball.

    In simple terms, the work done during a bouncing ball system involves three possible energy sources, 1) Gravitational potential energy (energy due to its position) 2) Kinetic energy (energy due to its motion) 3) frictional energy (lost due to production of heat and sound).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work