• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

What Factors Affect the Bounce of a Squash Ball.

Extracts from this document...

Introduction

Physics Coursework

What Factors Affect the Bounce of a Squash Ball

Introduction

        For my physics coursework, I have been asked to investigate the factors which affect the way in which a squash ball will bounce. I looked into a few different factors, including; Heat of the ball, landing surface of the ball, and in depth: the height from which the ball is dropped.

        To observe how the height a ball is dropped from affects the height the ball bounces back to, we put a meter stick against a wall, with another one directly above it (two meters tall). We then held the ball so the bottom of it aligned with the height we were planning to drop it from (.80 m, 1.00 m, etc) and released it. Meanwhile, another member of our team was lying on the floor facing the meter stick, and observed, from ground level, how high the ball rebounded.

We dropped the ball at .2 m intervals between 0.6 and 2.0 m (0.6, 0.8, 1.0, 1.2, etc). We dropped the ball from the same height five times in order to account for anomalous (or ‘misfit’) results, and to keep it a fair test. One more thing we did to try and enforce a fair test was to heat the ball to 40 degrees Celsius after every five drops.

...read more.

Middle

        In ‘i’, the ball has hit the ground, and because of inertia, the ball tries to keep moving and can’t because the ground beneath it is solid. This causes the ball to change to a sort of ‘oval’ shape, this change of shape causes some energy to be lost as heat and the kinetic energy to become Elastic Energy. Also, the ball hitting the ground will cause some energy to go on as sound and some will be sent through the surface as a wave.

        In ‘ii’, the ball is still, and has no energy other than Elastic Energy; it is exactly between ‘i’ and ‘iii’.

        In ‘iii’, The Elastic Energy is being converted to Kinetic Energy, and causes the ball to go from the ‘oval’ shape, back to its original shape, and bounces off of the ground. The Elastic Energy in the ball is now becoming Kinetic Energy again and the reshaping of the ball causes some more energy to be lost as heat.

4

        Here the ball is going back up after bouncing off of the ground. The ball has Kinetic Energy, and again some energy is lost as heat due to friction between the air and the ball.

5

        At this stage, the ball is stationary in the air because gravity has prevented it from rising any further.

...read more.

Conclusion

Ball Speed

        Epg = Ek on impact. To work out the velocity (speed) of the ball on impact we would use the formula v=√Ek ÷½m. First we need to know the value of Ek which is dependant on Epg (If Epg = 0.006J, Ek = 0.006J). For 1.0m we would find the square root (√) of Ek (at 1.0m Ek = 0.006J). The square root of 0.006 is 0.078. So we have v=0.078 ÷ ½m. ½m = 0.012. So v=0.078 ÷ 0.012. 0.078 ÷ 0.012 = 6.5. Therefore speed at impact of a ball dropped 1.0m = 6.5 m/sec.

Evaluation

        There are just two anomalies, they are at 1.4m and 1.6m, they is quite far from the line of best fit. I believe the cause was human error – perhaps in the inaccuracy of trying to see how high the ball was in a fraction of a second.

If I had the chance to repeat this investigation, I would improve the procedure by improving the measuring system, perhaps by using a digital video camera to record how high the ball bounced and then playing it back frame by frame on a computer because it is very hard to see where the ball is in a fraction of a second with human eyesight.

        I would increase the range of results to be from 0.2m – maybe 5.0m, because it would give a much larger range, in which perhaps the rule of the ball bouncing higher when dropped from higher would be incorrect.

Alex Powell    Physics    Mr. Smith

...read more.

This student written piece of work is one of many that can be found in our GCSE Electricity and Magnetism section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Electricity and Magnetism essays

  1. Investigating the relationship between drop height and bounce height when a ball is dropped.

    30 31 33 31.3 0.8 41 39 48 42.6 1.0 51 52 60 54.3 1.2 63 61 69 64.3 1.4 78 80 80 79.3 1.6 85 86 89 86.6 1.8 93 99 95 95.6 2.0 105 106 106 105.6 Height (m)

  2. How temperature affects the bounce height of a squash ball.

    I think I was able to set the investigation up quickly and obtain my results quickly as well.

  1. physics of the bouncing ball

    I will also need to make sure the surface is the same each time. Measure the bounce height from the bottom of the ball. This will make sure I measure the height correctly and evenly each time I drop the ball. Apparatus * 2 Meter rulers * Hard surface (e.g.

  2. Resistance Coursework

    I conclude this because my graph shows that resistance is inversely proportional to 1 (thickness2) so the theories behind these conclusions are: As the length doubles the resistance doubles. Resistance is caused by electrons bumping into ions. If the length of the wire doubles, the electrons bump into the ions twice as much so the resistance will double.

  1. An investigation to find out how gravitational potential energy is converted into kinetic energy.

    This would have caused an increase in the distance travelled and hence a decrease in the trolley's speed. Grooves or a path for the trolley's wheels would make the distance travelled by the trolley constant throughout. Systematic error The stopwatch may have had a systematic error in recording the time.

  2. The Bouncing Ball Experiment

    gravitational force of the earth will try to pull it back down. This gives it a certain energy, which is called gravitational potential energy. The equation for gravitational potential energy is: Gravitational Potential Energy = mass (kg) x Gravitational Field Strength x Height (m)

  1. Why does a squash ball bounce higher when it is warmed up?

    Change the way the ball was dried as I think a more sophisticated way could be used to prevent human error. 2.

  2. What affects the bounce of a squash ball?

    Prediction I predict that as the temperature increases so will the height of the bounce. This is because it will weaken the cross-links (research3). I predict that the graph's line will increase steadily, it may go back down slightly after a point.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work