• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11

What is the effect of concentration on the rate of a chemical reaction?

Extracts from this document...

Introduction

Aim: What is the effect of concentration on the rate of a chemical reaction? To investigate the reaction between Magnesium (Mg) and Hydrochloric acid (Hcl) and see if by altering the concentration of Hydrochloric acid (Hcl) affects the speed of the reaction. Scientific Knowledge: Mg + 2Hcl MgCl2 + H2 Magnesium Hydrochloric acid Magnesium Hydrogen Chloride gas Reactants Products All substances are made up of particles. In liquids there is a distance between two particles, because in liquids the particles are not so closely packed together. In gases the particles are really far apart, and there is a substantial gap between the particles. However, in solids particles are closely packed together and there is no space or gap between two particles of solids. If, either in gases or liquids we give these particles a little energy then they start to move. In liquids the movement is not too great because the particles are not very far part, but in gases because the particles are really far apart and this means that particles start to run around. In solids though, particles are really closely packed together, so if they are given a little energy, the start to vibrate as they can't move around because of not having any space between them. This theory of particles moving in liquids and gases and vibrating in solids is called KINETIC THEORY. If the particles are moving around in liquids and gases than there is a good chance that these particles will collide with each other. In liquids there is a greater chance of particles colliding with each other, in comparison to the particles in gases as the particles in liquids are more closely packed and although there is space to move, the space is not as great as in gases. In solids there is no chance of particle colliding, as when these particles are given energy they can only vibrate. The collision of moving particles with other particles when they are moving around is called COLLISION THEORY. ...read more.

Middle

To start this experiment I will first measure 40cm� of 0.25 Hcl by using a measuring Cylinder and pour it in a conical flask. I would then do a check on the syringe to make sure that it is all the way in, because if it is not in, then the whole experiment could go wrong because it would give us the wrong information. I will also check that the stop watch has been reset, so that the time starts from 0. After doing the check I will connect the cork and the bent tube with ground glass syringe and get ready. If we have to do this experiment accurately, then we need two people for this. After connecting the cork and bent tube to the Ground glass syringe I will add 4cm of Magnesium to Hydrochloric acid in Conical flask and as soon as I have added Magnesium, I will quickly close the Conical flask, with the cork connected to the bent tube and my other partner will start the time as soon as the Magnesium is added to Hydrochloric acid. After 30 seconds on the stop watch, I will disconnect the cork with bent tube from the conical flask, so that no more Hydrogen gas (which is given off, when Hydrochloric acid reacts with Magnesium) passes from conical flask into Glass Ground syringe. We will calculate the rate of reaction of 0.25 Hcl with 4cm of Magnesium by measuring the volume of Hydrogen gas which managed to collect into the Ground Glass Syringe within 30 seconds. I would then record the volume of Hydrogen gas into a Table of results. I will repeat the experiment with 0.25 Hcl and 4cm of Mg three times, so that I can find an accurate average volume of gas which was collected in the syringe when 0.25 Hcl and 4cm of Mg reacted. To find if the rate of reaction increases as the concentration of acid goes up, I will repeat the same procedure which I used to measure the rate of reaction of 0.25 Hcl with 4cm of Mg. ...read more.

Conclusion

To validate and double check our results we can use another method of calculating rate of reaction by calculating loss of mass in reactants. To use this method we need conical flask, Hcl of different concentrations, Magnesium, electronic balance and a stop watch. In this experiment, we put 40cm� of Hcl of whichever concentration we want in conical flask and weigh it altogether. We then weigh 4cm of Magnesium and add its weight into the combined weight of Hcl and Conical flask. We then ready the stop watch and put Magnesium into the Hcl. The crucial difference between this method of calculating rates of reaction and the method we used in the experiment is that this method allows the Hydrogen gas to escape and measures the rate of reaction by comparing loss of mass with the time it took to lose that much mass. After I add Magnesium to Hydrochloric acid, I will start the stop watch and after 30 seconds, I will record the mass of the mixture, which should be less than before, as some of the Hydrogen gas must have escaped because of the reaction. I will then record the mass of the mixture after 60 and 90 seconds. To find the rate of reaction for that particular concentration of Hcl, I will have to use a formula which is; Loss of mass in reactants Unit I will then use exactly the same procedure for other concentrations of Hcl and by using this formula: Loss of mass in reactants / unit I should be able to find the rate of reaction. I will then put the results in a table of results and compare. If the procedure is done correctly, then the results form this method should not be different from the results of the method I used in my experiment. I we were to do the whole experiment again, to find out if concentration has any effect on the rate of reaction, I would certainly implement all of these corrections suggested in my Evaluation, so that I get results which are highly accurate. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our GCSE Patterns of Behaviour section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related GCSE Patterns of Behaviour essays

  1. Marked by a teacher

    Investigation of the rate of reaction between Magnesium and Hydrochloric acid

    4 star(s)

    + 4HCl(aq) ==> 2CaCl2(aq) + 2CO2(g) + 2H2O(l) This is a list of my equipment that I will use and the reasons of why I chose them. Equipment chosen Reasons for the choices Gas syringe (100cm�/divisions of 1cm�) It is easier to measure the volume of the gas produced by the reaction (carbon dioxide)

  2. Marked by a teacher

    The Effect of Concentration on the Rate of Reaction between Magnesium [Mg] and Hydrochloric ...

    4 star(s)

    Many reactions are not successful only some are successful and this is because some reactions have collisions in which the molecules are moving around giving the bonds the strength to break (activation energy). If you increase the concentration of the reactions and the temperature it brings more collision and therefore the success rate is higher increasing the rate of reaction.

  1. Marked by a teacher

    For my experiment I am finding out the effects on the reaction rate when ...

    3 star(s)

    > Stopwatch- I used a stopwatch to measure the time it took for the reaction to finish and the person who dropped the magnesium ribbon would also do the timing so that there would be no delay in starting the timer.

  2. Investigating the Rate of Reaction Between Hydrochloric Acid (Hcl) and Magnesium (Mg).

    After that there is a decrease (D). This is the energy being given out as new bonds are formed between magnesium and chlorine. And then there is a settled energy level at the end. We can see from this that the energy level at the end is less than at the beginning of the reaction.

  1. Rates of reaction between Magnesium and HCl.

    Firstly it is possible to measure the rate of products formed. Secondly, measure the rate at which the chemicals disappear. I have some background knowledge on this subject field. I conducted an experiment to investigate the effect of temperature on the rate of reaction.

  2. Investigation into the Effect Concentration has on Rate of Reaction.

    140 150 160 170 180 Reading 1 4.5 6 7.5 11 13.5 16.5 19 21.5 24 27 30 33 35 38 41 44 47 50 Reading 2 4 6 8 11 13 16 19 21 23 26 29 31 34 38 40 44 47 50 Average 4.25 6 7.75 11

  1. To investigate the effect of the concentration of nitric acid on the rate of ...

    It will be fastest at 2.0 molar and slowest at 1.4 molar over the one minute time period. This is because as the concentration of a reactant (in this case the acid) is increased, there will be more reactant particles available and, therefore, more effective collisions (i.e.

  2. Find out how the rate of hydrolysis of an organic halogen compound depends on ...

    1 - THE PROGRESS CURVE METHOD A progress curve shows how the concentration of a reactant (or product) changes as the reaction proceeds. A progress curve for the hydrogen peroxide decomposition is shown below. Figure 10 Figure 11 shows how a progress curve can be used to find the rate of the reaction for different concentrations.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work