What is the evidence that that the structure of a plant community is determined by the diversity of the mycorrhizal fungi in the soil?

Authors Avatar

What is the evidence that that the structure of a plant community is determined by the diversity of the mycorrhizal fungi in the soil?

Plants are the cornerstone of the global ecosystem. Being primary producers they convert energy from the sun into the creation of carbon compounds that serve as the fuel for life. However this cornerstone has an unappreciated yet vital set of foundations, mycorrhizal fungi that aid in the collection of nutrients needed for assimilation in return for some of the plants organic compounds. In this paper I shall describe the pathway science has taken as it tries to understand more about the complex interactions between plants and fungi, from the initial questions raised by Grime (1987) regarding the necessity of mycorrhizal fungi, to the landmark studies by Simard (1997) and Heijden (1998) and finally onto the effects man is having on mycorrhizal biodiversity and its implications for the future Lilleskov (2001).  

Mycorrhizal fungi are fungi that form associations with plant roots, either externally, ectomycorrhizae, or internally endomycorrhizae. Ectomycorrhizae ensheaf the plant root (creating the mantle) and send out projections called mycelia which scavenge the soil at a level inaccessible to plant roots (>3µm). This opens up a new world of resources for the symbiont to exploit, which would usually be limiting factors such as Nitrogen (N) and Phosphorous (P). They are abundant in nearly all land plant families (~80%); up to 90% of most trees “feeding” roots have such an association (Read 1997). Ectomycorrhizae assist plants in a variety of ways, through solubilising N and P from litter as well as P from rock, translocation of N and P over long distances, store P and polyphosphate and N as amino acids and release nutrient to the plant across a specialised interface, the hartig net. Endomycorrhizal fungi form intracellular associations with plant root cells and have very small mycelia. They are found together with ~90% of land plant families. This mutualistic symbiosis is undertaken by Arbuscular Mycorrhiza Fungi (AMF), order Glomales, a Zygomycete. They assist in plant uptake and mobilisation of N and P.

A major aim in ecology is to understand the determinants of plant community structure, the factors affecting the diversity of plant species, their spatial distribution and relative abundance. In 1987 the major factors were thought to be; Plant soil interactions, Plant climate interactions, Interactions among plants, Interactions of plants with herbivores and Pathogens. The interactions of plants with microbes had been overlooked. The reasons for this lack of research were probably due to the small number of people in the field at the time, the complexity of the analysis of the experiment, and the trouble identifying and comparing fungal morphotypes without precise molecular tools.

Grime (1987) conducted a study to identify the factors affecting floral diversity in a model system. Three variables were investigated in 40 turf microcosms (5 replicates per combination), soil heterogeneity, grazing by a herbivore and the addition of AMF. Results showed that the presence of AMF increased diversity (using the Shannon index). The relative growth of the canopy species Festuca ovina did not appear to alter with the addition of AMF but the subordinate species underwent an increase in biomass. For example Centauium erythrea seedlings had an increased rate of growth in 25% of the population. Grime hypothesised that an export of assimilate from the canopy species to the subordinate species through a mycelia network was likely, a notion that went directly against the Darwinian concept of individual fitness being paramount.

Over the next ten years, research continued into the distribution of nutrients through the mycelial network in the laboratory using isotopic pulse chase analysis. It was noted that cultured AMF species were able to associate with a wide range of plant species and many species could be present on a single plant. This provided evidence for a Wood Wide Web (Nature 1997), where groups of plants are associated through their fungal symbionts and provide a pathway for the transmission of nutrients between them. These multi-plant associations are referred to as guilds. However there was no direct evidence that these cultured AMF species had any bearing on the plant fungal interactions in the field, whether they do associate with more than one species and if so is there a transfer of assimilates between plants? I.e. the presence of the Wood Wide Web.

Join now!

Simard (1997) executed a landmark study to validate the common held hypothesis of the existence of the Wood Wide Web and extend earlier field results. Simard set out to ascertain whether the transfer of Carbon (C) occurred in the field, if it was bidirectional between plants, if a net gain occurred in one plant, and if the transfer affected the plants performance in the field. So far lab experiments had suggested movement of nutrients occurred in a source sink relationship and the magnitude of this transfer cold be influenced through the shading of recipient plants or fertilisation with P ...

This is a preview of the whole essay