• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18

Biology Industrial Melanism of Peppered Moth Lab

Extracts from this document...

Introduction

Biology Lab Industrial Melanism and the Peppered Moth Design Question How might the appearance of individuals influence their likelihood of being seen and eaten by predators? What influence might natural selection have on survival from predators? Hypothesis The appearance of individual will influence their likelihood of being seen and eaten by predators. In the case of different moths, there will be more of melanic moths on dark-coloured tree bark, more light-coloured moths on light-coloured tree bark and intermediate-coloured tree bark. This is because of their ability to camouflage in those habits and therefore have higher survival rates from predators. As the opposite colour of moth from its habit dies off, natural selection will favour the moths that can camouflage to its surroundings. Variables The independent variable of the experiment is the light and dark-colour "tree bark". The dependent variable is the percentage of light-coloured and melanic moths. The control is the intermediate-colour of the tree bark and the time of 4 seconds Materials Light-coloured "tree bark" Intermediate-coloured "tree bark" Dark-coloured "tree bark" 30 light-coloured paper "moths" 30 melanic paper "moths" Stopwatch Paper Pencil Procedure 1. A group of three was formed. 2. Materials needed were gathered. 3. The roles of the Predator, the Assistant and the Timer were taken 4. The Assistant placed 15 light-coloured and 15 melanic moths randomly on a light-coloured "tree bark" background while the Predator was turned around. 5. The Predator turned around at the Timer's yell of "hunt" to remove moths for 4 seconds until the Timer's yell of "stop" 6. The number of light-coloured and melanic moths removed was. The Assistant replaces each melanic moths with a light-coloured moths and vice versa. The number of light-coloured and melanic moths was recorded 7. Steps 4-6 were repeated on an intermediate-coloured background and dark coloured background. 8. Materials were returned to where they belong Data Collection and Processing Raw Data Tables Table 1. ...read more.

Middle

Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 70.0 30.0 2 76.7 23.3 3 83.3 16.7 4 90.0 10.0 5 90.0 10.0 Processed Table 12. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 63.3 36.7 2 50.0 50.0 3 60.0 40.0 4 83.3 16.7 5 86.7 13.3 Processed Table 13. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 50.0 50.0 2 53.3 46.7 3 63.3 36.7 4 66.7 33.3 5 76.7 23.3 Processed Table 14. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 63.3 36.7 2 73.3 26.7 3 83.3 16.7 4 93.3 6.7 5 86.7 13.3 Processed Table 15. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 60.0 40.0 2 70.0 30.0 3 83.3 16.7 4 100.0 0.0 5 100.0 0.0 Processed Table 16. Mean and standard deviation of light-coloured "tree bark" Trial Mean Percentage Of Melanic Moth (%) S.D of Melanic Moths Mean Percentage Of Light-Coloured Moth (%) S.D of Light-coloured Moths 1 40.0 2.33 60.0 2.33 2 32.0 2.99 68.0 2.99 3 21.3 4.46 78.7 4.46 4 20.0 13.54 80.0 13.54 5 17.3 10.39 82.7 10.39 Processed Table 17. Mean and standard deviation of intermediate-coloured "tree bark" Trial Mean Percentage Of Melanic Moth (%) S.D of Melanic Moths Mean Percentage Of Light-Coloured Moth (%) S.D of Light-Coloured Moths 1 51.3 5.05 48.7 5.05 2 54.0 7.22 46.0 7.25 3 51.3 5.06 48.7 5.06 4 46.7 10.00 53.3 10.00 5 51.3 7.30 48.7 7.30 Processed Table 18. ...read more.

Conclusion

If they did blend, they still have the chance of getting captured. However, if they are bright and vivid, they have a better ability to survive by scaring away predators. Through natural selection, the poisonous bright coloured frog probably adapted better than the one that blended into its surroundings. Because of evolution, most poisonous frogs have striking-colouration. j) Lamarck believed in the evolution theory of use and disuse. In the example of the giraffe, he believed that a given giraffe could, over a lifetime of straining to reach high branches, develop an elongated neck. This theory does not support the peppered moth example because a moth could not adapt to its surroundings by changing its characteristics through the theory of use and disuse. k) If the original population of the peppered moth did not show variation and evolution did not take place, the moth would slowly die off because of their clear visibility to potential predators. The species could completely become extinct or they would move and find a new environment to live where it hasn't been affect by industrial melanism. l) Industrial melanism means the darkness of the skin, feathers, or fur obtained by a population of animals living in an industrial region where the environment is soot and smoke darkened. m) Biologist Laurence Cook's new founds supports Kettlewell's hypothesis to an extent because it says the lighter-coloured moths are making a dramatic comeback when the tree barks are becoming lighter again. The light-coloured moths are now more able to adapt in a lighter-coloured tree bark and the population is increasing because of natural selection. In this case it supports Kettlewell's hypothesis because he suggested that the colouration of the peppered moth was a result of changes in the environment. On the other hand, it does not support Kettlewell's hypothesis because Laurence stated that the moths were seldom seen on trees, which means that the moths did they also live there even though the tree barks favours them. Kettlewell's premise of testing the likelihood of moth's appearance influencing natural selection only on tree barks was incorrect. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Biology essays

  1. Enzyme IA Biology

    Additionally the timing in step 10 h and I was most certainly not kept consistent. This was due to the fact that the pipet did not always squirt all of its liver solution into the test tube in one go combine with the failure to stop the test tube fully in the first capping.

  2. IB Genetic Lab

    Let B represent the average height. A = 160.0cm B = 159.0cm The standard deviation can be calculated using the following equation: Let A represent the average length of arm-span of females. Let B represent the average height. sA = 17.6 sB = 16.9 A Student's t-test can also be used using the following equation: t = 6.9 x 10-2 Table 2.

  1. Plant Tropism Lab

    data shows that the beans generally increase their tilt to the right, where the light source is. This shows that plants grow towards a light source, which in this case would be the sunlight. The data also shows that when the beans were rotated 90 degrees counter clockwise (to the left)

  2. Bio lab - Oxygen Consumption in germinating and non-germinating seeds

    the oxygen consumption of the germinating seeds in room temperature was faster than the one in ice water. So, it means that as the temperature of the water decreases, the rate of oxygen consumption will decrease as well. My first part of the hypothesis was that germinating seeds will have higher rate of oxygen consumption than the non-germinating seeds.

  1. Human variation

    = 1- (6 X 5293/52(2703) = 1-(0.225) = 0.774 In this case, the critical value for 52 samples is 0.274. The calculated value is greater than the critical value, so there is a positive correlation between the two variables. Conclusion: - from graph 1 and graph 2 it was evident

  2. Biology Extended Essay 2009

    scurvy; bleeding and swollen gums, wounds and bruises that do not heal.5 Ascorbic acid is very sensitive to chemical and enzymatic oxidation. During food processing, cooking and storage is the period where its content can be loss by coming in touch with oxygen.6 This suggests the reason for depletion of Ascorbic acid content over time in freshly squeezed orange juice.

  1. IB Genetic Unit Notes

    Reproductive Therapeutic * Creation of new individual e.g. Dolly the sheep * Technique used to create Dolly is SCNT. * First a nucleus from a somatic (body) cell is taken. Nucleus is removed from the egg cell and replaced with that of the somatic cell.

  2. Comparing the Organ Systems of Worms, Grasshoppers. Frogs, and Humans

    Our hearts pumped deoxygenated blood from the heart to our lungs, where gas exchange takes place. Then, the oxygenated blood gets pumped back to the heart, where it is separated from the deoxygenated blood. The oxygenated blood is then pumped throughout the body, delivering oxygen to body cells.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work