• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month
Page
  1. 1
    1
  2. 2
    2
  3. 3
    3
  4. 4
    4
  5. 5
    5
  6. 6
    6
  7. 7
    7
  8. 8
    8
  9. 9
    9
  10. 10
    10
  11. 11
    11
  12. 12
    12
  13. 13
    13
  14. 14
    14
  15. 15
    15
  16. 16
    16
  17. 17
    17
  18. 18
    18

Biology Industrial Melanism of Peppered Moth Lab

Extracts from this document...

Introduction

Biology Lab Industrial Melanism and the Peppered Moth Design Question How might the appearance of individuals influence their likelihood of being seen and eaten by predators? What influence might natural selection have on survival from predators? Hypothesis The appearance of individual will influence their likelihood of being seen and eaten by predators. In the case of different moths, there will be more of melanic moths on dark-coloured tree bark, more light-coloured moths on light-coloured tree bark and intermediate-coloured tree bark. This is because of their ability to camouflage in those habits and therefore have higher survival rates from predators. As the opposite colour of moth from its habit dies off, natural selection will favour the moths that can camouflage to its surroundings. Variables The independent variable of the experiment is the light and dark-colour "tree bark". The dependent variable is the percentage of light-coloured and melanic moths. The control is the intermediate-colour of the tree bark and the time of 4 seconds Materials Light-coloured "tree bark" Intermediate-coloured "tree bark" Dark-coloured "tree bark" 30 light-coloured paper "moths" 30 melanic paper "moths" Stopwatch Paper Pencil Procedure 1. A group of three was formed. 2. Materials needed were gathered. 3. The roles of the Predator, the Assistant and the Timer were taken 4. The Assistant placed 15 light-coloured and 15 melanic moths randomly on a light-coloured "tree bark" background while the Predator was turned around. 5. The Predator turned around at the Timer's yell of "hunt" to remove moths for 4 seconds until the Timer's yell of "stop" 6. The number of light-coloured and melanic moths removed was. The Assistant replaces each melanic moths with a light-coloured moths and vice versa. The number of light-coloured and melanic moths was recorded 7. Steps 4-6 were repeated on an intermediate-coloured background and dark coloured background. 8. Materials were returned to where they belong Data Collection and Processing Raw Data Tables Table 1. ...read more.

Middle

Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 70.0 30.0 2 76.7 23.3 3 83.3 16.7 4 90.0 10.0 5 90.0 10.0 Processed Table 12. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 63.3 36.7 2 50.0 50.0 3 60.0 40.0 4 83.3 16.7 5 86.7 13.3 Processed Table 13. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 50.0 50.0 2 53.3 46.7 3 63.3 36.7 4 66.7 33.3 5 76.7 23.3 Processed Table 14. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 63.3 36.7 2 73.3 26.7 3 83.3 16.7 4 93.3 6.7 5 86.7 13.3 Processed Table 15. Calculations of the percentages of light-coloured moths and melanic moths left on dark-coloured "tree bark". Trial Number Percentage of Melanic Moths (%) Percentage of Light-Coloured Moths (%) 1 60.0 40.0 2 70.0 30.0 3 83.3 16.7 4 100.0 0.0 5 100.0 0.0 Processed Table 16. Mean and standard deviation of light-coloured "tree bark" Trial Mean Percentage Of Melanic Moth (%) S.D of Melanic Moths Mean Percentage Of Light-Coloured Moth (%) S.D of Light-coloured Moths 1 40.0 2.33 60.0 2.33 2 32.0 2.99 68.0 2.99 3 21.3 4.46 78.7 4.46 4 20.0 13.54 80.0 13.54 5 17.3 10.39 82.7 10.39 Processed Table 17. Mean and standard deviation of intermediate-coloured "tree bark" Trial Mean Percentage Of Melanic Moth (%) S.D of Melanic Moths Mean Percentage Of Light-Coloured Moth (%) S.D of Light-Coloured Moths 1 51.3 5.05 48.7 5.05 2 54.0 7.22 46.0 7.25 3 51.3 5.06 48.7 5.06 4 46.7 10.00 53.3 10.00 5 51.3 7.30 48.7 7.30 Processed Table 18. ...read more.

Conclusion

If they did blend, they still have the chance of getting captured. However, if they are bright and vivid, they have a better ability to survive by scaring away predators. Through natural selection, the poisonous bright coloured frog probably adapted better than the one that blended into its surroundings. Because of evolution, most poisonous frogs have striking-colouration. j) Lamarck believed in the evolution theory of use and disuse. In the example of the giraffe, he believed that a given giraffe could, over a lifetime of straining to reach high branches, develop an elongated neck. This theory does not support the peppered moth example because a moth could not adapt to its surroundings by changing its characteristics through the theory of use and disuse. k) If the original population of the peppered moth did not show variation and evolution did not take place, the moth would slowly die off because of their clear visibility to potential predators. The species could completely become extinct or they would move and find a new environment to live where it hasn't been affect by industrial melanism. l) Industrial melanism means the darkness of the skin, feathers, or fur obtained by a population of animals living in an industrial region where the environment is soot and smoke darkened. m) Biologist Laurence Cook's new founds supports Kettlewell's hypothesis to an extent because it says the lighter-coloured moths are making a dramatic comeback when the tree barks are becoming lighter again. The light-coloured moths are now more able to adapt in a lighter-coloured tree bark and the population is increasing because of natural selection. In this case it supports Kettlewell's hypothesis because he suggested that the colouration of the peppered moth was a result of changes in the environment. On the other hand, it does not support Kettlewell's hypothesis because Laurence stated that the moths were seldom seen on trees, which means that the moths did they also live there even though the tree barks favours them. Kettlewell's premise of testing the likelihood of moth's appearance influencing natural selection only on tree barks was incorrect. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Biology essays

  1. Predator Prey Simulation Lab Report

    Describe the relationship between the variables: A. A predator is an organism that eats another organism. The prey is the organism which the predator eats. Predator and prey evolve together. The prey is part of the predator's environment, and the predator dies if it does not get food, so it

  2. Bio lab - Oxygen Consumption in germinating and non-germinating seeds

    Since KOH is caustic and corrosive, the solution will damage seeds after contact. If there is a contact, the seeds would not process respiration, which will lead to failure in oxygen consumption. Additionally, some KOH solution might have oversaturated or not saturated the cotton balls enough.

  1. IB Genetic Lab

    Let B represent the average height. A = 160.0cm B = 159.0cm The standard deviation can be calculated using the following equation: Let A represent the average length of arm-span of females. Let B represent the average height. sA = 17.6 sB = 16.9 A Student's t-test can also be used using the following equation: t = 6.9 x 10-2 Table 2.

  2. Ecology Open Investigation Does the geographic location affect the biotic and abiotic ...

    Wrong calculations were carried out from the inaccurate results. Leave the Horiba in the lake or swamp until the jumping of numbers stops and a clear number is shown and the number is set. Then record the number shown on the Horiba. Human bias and the effort put into carrying out the experiment Because the investigation was carried on

  1. Human variation

    that both male and female students at age 16 have positive correlation between their hand spans and height separately. When the results of both sexes were merged together in graph 3, there was a positive correlation between the height and hand span with some anomalies.

  2. Germination lab experiment

    the seed), water will diffuse into the seed causing it to germinate. Materials: * 40 Cress seeds * Pure Water * 4 Petri dishes * 30 ml of 16% solution * Measuring beakers Variables: Controlled variable: Amount of seeds, temperature, amount of water, oxygen and sunlight Independent variable: Amount of salt solution Dependant variable: Rate of germination Methods: 1.

  1. Enzyme Lab

    Gather and prepare all the items from the list of apparatus'. 2. Punch out 5 disks from the paper using the hole-puncher. 3. Sprinkle a tiny portion of sand onto the liver, and grind it using the mortar and pestle.

  2. Comparing the Organ Systems of Worms, Grasshoppers. Frogs, and Humans

    Then, it flows back to the heart, and the cycle repeats. Humans, on the other hands, are classified under birds and mammals, which have one 4-chambered heart, which pumps twice (complete). Our hearts have separated chambers, one for oxygenated blood (which flows in one direction), and one for deoxygenated blood (which flows in the other direction).

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work