• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Exercise Investigation

Extracts from this document...

Introduction

Exercise Investigation Which activity, between Aerobics or Power Walking, has a bigger impact on the percentage of heart rate increase, among 15 and 16 year old girls with similar fitness, with the average heart rate of 60 to 80? INTRODUCTION The main focus of the lab this time was to find the relationship between exercise and cardiovascular activity. The research question I chose to focus was "Which activity, between aerobics or power walking, has a bigger impact on the percentage of heart rate increase among 15 and 16 year old girls, with the average heart rate of 60 to 80?" I thought that this experiment would be interesting since it did not require any special equipments and I could not really predict the results easily. The hypothesis I came up with at the beginning was that "If the type of sports affects the increase of heart rate, then power walking will increase the heart rate more than aerobics since it requires more dynamic movement relatively." For aerobics, you mostly stay at one spot and have many rests in between the different exercises. On the other hand, when power walking, you have to move the skeletal muscles constantly. As the image below shows, oxygen is needed to provide energy to these muscles. Therefore, the heart will have to contract more powerfully and faster in order to move oxygen around. It is also important to note that skeletal muscle has the largest increase in the percentage of total blood flow than any other organs after exercise. ...read more.

Middle

Then you divide this by the resting heart rate and multiply it by 100 to figure out the percentage of increase. This is important since it will measure how much the heart raise was able to rise in proportion to the original heart rate. So in this case it would be (111-79)/79X100=40.51(2dp) and (102-79)/79X100=29.11 (2dp). Then you would have to find the average of these two numbers in order to find the mean percentage of increase in heart rate for the person. And that would be (40.51+29.11)/2=34.81. Then this kind of average of the increase in heart rate will have to be found for everyone. You can get the same results by also finding the average increase of heart rate first and then dividing that by the resting heart rate in order to find the percentage. However, I chose my way, because I wanted to see the percentage for each time the activity was done so that I can analyze the data more thoroughly and find out some errors, if any, in the end of the experiment. Here is the table that shows the result of the calculations: Average Percentage of Heart Rate increase in Power Walking Person Percentage of Heart Rate increase 1 Percentage of Heart Rate increase 2 Average Percentage of Heart Rate increase 1 Y.A 40.51 29.11 34.81 2 J.Y 29.17 22.22 25.70 3 H.T 41.25 55.00 48.16 4 S.K 40.00 33.75 36.88 5 A.D 30.88 45.59 38.24 Average Percentage of Heart Rate increase in Aerobics Person Percentage of Heart Rate increase 1 Percentage of Heart Rate increase 2 Average Percentage of ...read more.

Conclusion

Additionally, there were some systematic errors as well. The basic outline of the experiment was quite successful but I think some of the controlled variables were not accurate. For example, I have said that I will test with people who had break fast and enough amount of sleep but this may differ from people to people and there isn't a fair method to measure this. When I reflect on the error bars, the aerobic one is tolerable but the bar for power working is quite big. This basically means that the results of the subjects were diverse. I think it is because the walking paces of the people are very different. In aerobics, we all have to follow the instructor's movements so we put similar effort into the exercise. However, when we go power walking, some people have the tendency to walk slower than other people. The experiment would have been fairer if I had taken this to account and used people with similar walking pace. Overall, I think the experiment was a success. Since I chose a research question that I could not really guess the result, I learned a lot and it was enjoyable as well. If I have to suggest a related investigation with a different independent variable, I would like to know more about how gender affects the heart rate when exercising, since it was the controlled variables that I was not sure about. 1 Aerobic. Web. 18 Nov. 2010. <http://www.aerobic.org/>. 2 "Skin and Muscle Blood Flow During Exercise - - World of Sports Science." Internet FAQ Archives - Online Education - Faqs.org. Web. 18 Nov. 2010. <http://www.faqs.org/sports-science/Sc-Sp/Skin-and-Muscle-Blood-Flow-During-Exercise.html>. ?? ?? ?? ?? 1 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Biology essays

  1. Marked by a teacher

    Neurology and Behaviour. Focus question: Is there an increase in the perception and ...

    5 star(s)

    This means that the data would not merely represent the disgust responses for each gender as there would be outliers or great examples of varying responses between some participants. The examples of when the male participants rated the images as more disgusting for image numbers five, twelve, fifteen, eighteen and twenty.

  2. Transpiration Investigation

    Control: Variable/factor, and its effect on the experiment Method of control/ monitoring the variable Air movement- may change the rate of evaporation of the stomata in the leaves Each trial is performed as close to the others in location/ time as possible, in an environment with as little variation as

  1. Should Animals have the same rights as Humans? Both animals and humans exhibit behaviours ...

    However as more complex animals with at least a higher degree of self awareness and intelligence. humans apply not only physical criteria in their selection of a mate but social, cultural and economic criteria too. Sexual attraction in humans is a huge and controversial topic and a full discussion of the issue lies beyond the scope of this essay.

  2. The effect of pvc piping on the breathing/heart rates of male year 12 students

    - Comparison of the breaths per minute of the hearts of male students age 16-17 trough different lengths of PVC piping. Regular breathing 25cm 50cm 75cm 100cm Average breaths per minute 21 18 16 15 12 Standard deviation 5 3 3 4 2 2.3.1- Processed data graph 1 (figure 3)

  1. To investigate how aerobic exercise affects the heart rate

    To meet these increased needs, more blood must be delivered to the muscles during exercise. In order for this to happen, the heart must beat faster to pump more blood to the muscles to transport oxygen and in addition remove waste products (carbon dioxide and water)

  2. Lung Capacity Fitness Level

    The main difference between a person with a high fitness level and a person with a low fitness level is the better ability to extract oxygen from the air in the lungs and also better able to extract oxygen from the blood.

  1. How the Heart Works

    Next the two ventricles contract, once again simultaneously, pumping blood out of the heart through the semilunar valves. The heart then relaxes (diastole) allowing it to once more fills up with blood. When you listen to the heart through a stethoscope you are likely to hear the heart, "lub-dub, lub-dub".

  2. An investigation on the changes in tidal volume and vital capacity of lungs before ...

    The mean and the standard deviation of tidal volume and vital capacity before exercise. Tidal volume /cm3 (100) Vital capacity /cm3 (100) Mean 1352 4277 Standard deviation 569.78 932.87 Table 3. Measurements of tidal volume and vital capacity after exercise.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work