• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Heart Recoil IA. Aim To compare the recoil and subsequent elastic limit of a mammalian aorta and vena cava.

Extracts from this document...

Introduction

IA 12: Unit 6- Investigating the Properties of Blood Vessels Aim To compare the recoil and subsequent elastic limit of a mammalian aorta and vena cava. Introduction Pumped by the muscular action of the heart, the blood is propelled around the body in tubular blood vessels. Blood flows through arteries, arterioles, capillaries, venules and veins. In this investigation we shall relate some of the physical properties of arteries and veins to their functions. Data Collection and Processing Raw data table to show the elastic recoil of vena cava Mass (g) Length of vena cava (�0.1cm) Vena cava with mass Vena cava without mass Elastic recoil (�0.2%) 0 (original length) 2.2 2.2 0.0 100 3.6 3.4 5.9 200 4.2 4.0 5.0 300 4.5 4.4 2.2 400 4.6 4.5 2.2 500 4.6 4.5 2.2 600 4.6 4.6 0.0 700 4.7 4.7 0.0 800 4.7 4.7 0.0 Raw data table to show the elastic recoil of aorta Mass (g) Length of aorta (�0.1cm) Aorta with mass Aorta without mass Elastic recoil (�0.2%) 0 (original length) 3.3 3.3 0.0 100 3.8 3.3 15.2 200 4.4 3.3 33.3 300 4.6 3.3 39.4 400 4.8 3.3 45.5 500 5.0 3.3 51.5 600 5.2 3.3 57.6 700 5.3 3.3 60.6 800 5.3 3.3 60.6 Calculations Elastic recoil of the first 100g Formula Working out Answer (1 d.p) Vena cava ((length with mass-length without mass)/ length without mass) x100 ((3.6-3.4)/3.4) ...read more.

Middle

But as the mass increases, the length when the masses are added only increases by a bit (ranging from 0 to 0.6). This can be seen from the elastic recoil of the vena cava. It first increased by 5.9% but as the mass load is increased, the elastic recoil decreases and gradually reached 0, meaning the elastic limit is reached (at 4.7cm). On the other hand, for the aorta, as the mass of weights increases, the elastic recoil gradually increases till it reaches it's elastic limit (at 5.3cm) where the length wouldn't increase even though the mass increases. This is supported from the line labeled "aorta" on Graph one. In the graph, we can clearly see the line (elastic recoil) steeply rising all the way up as the mass increases till 700g to 800g when the line levels off and remains at 60.6g.This means the elastic limit of the aorta has been reached. However, even though the mass of weights increases, the aorta always return to its original length at 3.3cm, even when the 800g load is added to it. This can be seen on the results. When the 800g load is added on, the aorta stretched to 5.3cm (from 3.3cm) but when the load is taken off, it immediately returns to the original length. ...read more.

Conclusion

This will make the experiment a fair test thus my results will be reliable The preparations of the samples (vena cava and aorta) may have been damaged. For example, there were some tiny cuts on my vena cava, which can affect the elasticity and the elastic limit of it. Use scissors to prepare and cut the sample of aorta and vena cava instead of using a scalpel so the cutting is more precise. This will ensure the samples won't be damaged when the load of mass is added When measuring the length of the aorta/ vena cava both when the mass is added and after the mass, it is not precise enough. This is because sometimes the ruler may be slanted or wobbly causing the readings to be inaccurate. Use a clamp and a stand to hold the ruler vertically to ensure accuracy when measuring the length of the vena cava/aorta Using only a pig's aorta/vena cava may be insufficient to support they hypothesis Repeat the experiment using other mammalian veins and arteries in order to have further evidence to support the hypothesis thus making the results more reliable 1 Maton, Anthea (1995). Human Biology Health. Englewood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-981176-1. 2 "Circulatory Systems - Biology Encyclopedia - Body, Animal, Organs, Blood, Separated, Major." Biology Reference. Web. 12 Feb. 2012. <http://www.biologyreference.com/Ce-Co/Circulatory-Systems.html>. ?? ?? ?? ?? Claudia Cheng ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Biology section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Biology essays

  1. IB biology Respiration IA

    Identify the Significance Level (a), (a) = .05 3. Calculate Degrees of freedom Degrees of freedom = Sum of sample sizes(n) - 2 n= 27 n2=27 n3=27 Degrees of freedom = 27+27-2 52= 54-2 4. Calculate Sample size n1=27 n2=27 n3=27 5. Find Value of t from t table Value of t = 2.01 6. Find Rejection Region(RR) 7.

  2. Enzyme IA Biology

    Plug Blender in b. Tighten removable bottom securely c. Pour 100ml beaker of water in d. Let liver drop into blender using scalpel to remove as much liver as possible from weightboat e. Secure Lid onto Blender f. Press Frappe Button g. Blend until liver solution no longer has visible chunks and is a light brown color.

  1. Ecology Design IA

    This design describes the method to use to determine the effect of sunlight intensity on the amount of organisms that are stuck to rocks on a low energy rocky shore in the lower intertidal zone. VARIABLES Variable Changing How it will be changed Values of the variable Independent The amount

  2. biology extended essay - How different diets: vegetarian, vegan and a meat centered diet ...

    Two years Eight years Three and a half months Four years For six months 14 00511-062 08/09 4.1.3 SURVEY FOR MEAT EATERS Table 5 QUESTIONS: First participant Second participant Third participant Fourth participant Fifth participant HOW OLD ARE YOU? 18 16 19 19 17 What gender are you?

  1. Investigating Macromolecules and their Properties

    In this experiment we will use four different tests to identify the different substances. We would perform iodine test to prove which of the substances, is starch (since iodine turns dark blue-black in the presence of starch). We would perform Biuret reagent test to prove which of the substances, is

  2. LAB-What infuences blood pressure

    Predictions - The obesity increases blood pressure, - The smoking increases blood pressure, - Body Mass Index shows correct tendencies, * INDEPENDENT VARIABLES * Blood pressure, * Weight, * Waist size, * CONSTANTS * Height, * CONTROLLED VARIABLES, * Number of blood measurements, The equipment required to carry out experiment:

  1. How the Heart Works

    The human heart is divided into four chambers, the left and right atrium (the superior atria) and the left and right ventricles (the inferior ventricles). The atria are the retrieving chambers, meaning that they are in charge of receiving blood from the outside of the heart.

  2. Duchenne Muscular Dystrophy

    Newton's first law and second law of motion are applied to the mechanics of a wheelchair. Newton's first law states that every object in a state of motion will stay in motion, unless acted upon by an external force. This is applied to the wheelchair by introducing mechanics to the

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work