Testing the dissolved oxygen levels in water samples.

Authors Avatar

Dissolved Oxygen and Primary Aquatic Productivity
Laboratory 12

Introduction

Dissolved oxygen levels are an extremely important factor in determining the quality of an aquatic environment. Dissolved oxygen is necessary for the metabolic processes of almost every organism.

Terrestrial environments hold over 95% more oxygen than aquatic environments. Oxygen levels in aquatic environments are very vulnerable to even the slightest change. Oxygen must be constantly be replenished from the atmosphere and from photosynthesis. There are several factors that effect the dissolved oxygen levels in aquatic environments.

Temperature is inversely proportional to the amount of dissolved oxygen in water. As temperature rises, dissolved oxygen levels decrease.

Wind allows oxygen to be mixed into the water at the surface. Windless nights can cause lethal oxygen depletions in aquatic environments.

Turbulence also increases the mixture of oxygen and water at the surface. This turbulence is caused by obstacles, such as rocks, fallen logs, and water falls, and can cause extreme variations in oxygen levels throughout the course of a stream.

The Trophic State is the amount of nutrients in the water. There are two classifications: oligotrophic and eutrophic. Oligotrophic lakes are oxygen rich, but generally nutrient poor. They are clearer and deeper than eutrophic lakes and are younger. Oxygen levels are constant. Eutrophic lakes are more shallow and nutrient rich. The oxygen levels constantly fluctuate from high to low.

Primary production is the energy accumulated by plants since it is the first and basic form of energy storage. The flow of energy through a community begins with photosynthesis. All of the sun’s energy that is used is termed gross primary production. The energy remaining after respiration and stored as organic matter is the net primary production, or growth. The equation for photosynthesis is as follows:

12H2O + 6CO2 → C6H12O6 + 6O2 + 6H2O

There are two ways to measure primary production, the oxygen method and the carbon dioxide method. The oxygen method uses a dark and light bottle to compare the amount of oxygen produced in photosynthesis and used in respiration. Respiration rate is determined by subtracting the dark bottle from the initial bottle. The carbon dioxide method places a transparent plastic bag over one sample and a dark plastic bag over the other. Each bottle is set up so that air is drawn through the enclosure and passes over carbon dioxide-absorbent material. The amount of carbon under the dark bag is respiration, while the amount of carbon under the transparent bag is the amount of photosynthesis minus the amount of respiration.

Join now!

There are three main gases dissolved in aquatic environments: nitrogen, oxygen, and carbon dioxide. Most gases obey Henry’s law, which says that at a constant temperature, the amount of gas absorbed by a given volume of liquid is proportional to the pressure in the atmosphere that the gas exerts.

c = K ×p

                                                             c = Concentration of the gas that is absorbed

K = Solubility factor

                     p = Partial pressure of the gas

Altitude may affect the p value of the equation. Higher altitudes decrease the solubility of gases in water. Temperature also has an affect, as temperature ...

This is a preview of the whole essay