• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Acids/Bases Design Lab. How does a change in the pH value of a solution of hydrochloric acid (HCl(aq)), affect how much zinc metal is reacted with the hydrochloric acid in a one minute time frame

Extracts from this document...


Research Question: How does a change in the pH value of a solution of hydrochloric acid (HCl(aq)), affect how much zinc metal is reacted with the hydrochloric acid in a one minute time frame (rate of reaction), if the zinc metal is kept as the excess reactant across all variations in pH of the hydrochloric acid solution. Hypothesis: If the pH of a solution containing hydrochloric acid (HCl(aq)) is decreased by increasing the concentration of the hydrochloric acid, then the amount of zinc metal that is reacted by the hydrochloric acid solution should increase since, controlling all other variables, an increase in the concentration of reactants results in an increase in the rate of reaction. Variables: Independent Variable: The independent variable in this investigation is the pH of the solution of hydrochloric acid. I will change the pH of the solution by increasing/decreasing the concentration of hydrochloric acid in the solution, through dilution of a stock solution of a 12 mol dm-3 hydrochloric acid solution during the investigation. I will use the following variations of hydrochloric acid, aware of the fact that it is monoprotic: Concentration of HCl(aq) in solution (mol dm-3) Volume of HCl(aq) solution (dm3) pH value of solution (pH) 2.0 0.030 -0.30 1.0 0.050 0 0.1 0.300 1 0.01 0.500 2 For the most part, these variations and their associated pH values do not reflect a real world scenario, such as acid rain environments. However, the trend among them can be most easily studied and therefore the data collected can be applied as a trend to investigate how changes in pH values of acidic solutions affect the rate of reaction of zinc metal strips. For example, these results can be extrapolated to how quickly some aluminum-zinc metal alloys will deteriorate by comparing a region with rain that is more acidic with another. As can be seen by the above table, the concentration of hydrochloric acid is being manipulated so that the pH value varies by a whole number. ...read more.


In addition, it should only be handled using appropriate utensils like tongs or tweezers, so as to avoid contaminating the material with hand oils present on human fingers, or other contaminants. It is highly unlikely that pure, distilled water will be available during the investigation due to some presence of impurities. Therefore, the water used in the investigation should come from the same water tank to ensure that at least the contaminants will be somewhat constant throughout the course of the investigation. Materials and Equipment Required for the Investigation: - Stopwatch (seconds, +/- 0.1) - Analytic electronic milligram balance (+/- 0.001g) - 40 cm3 of concentrated 12 mol dm-3 hydrochloric acid (HCl(aq)) - 18 x 50 cm3 (+/- 5 cm3) beakers - 6 x 500 cm3 (+/- 50 cm3) beakers - 1 x 500.0 cm3 (+/- 0.2 cm3) volumetric flask - 12 x 2.00 g strips of sealed zinc metal of equal size (Zn(s)) - 1 x 10.0 cm3 (+/- 0.5 cm3) graduated cylinder - 1 x 50.0 cm3 (+/- 0.5cm3) graduated cylinder - 1 x 100.0cm3 (+/- 0.5cm3) graduated cylinder - Tweezers - Tongs - Electrically powered hot plate - Mercury thermometer (�C, -10 to +110, +/- 0.5) - 12 x Plastic weighing boats - Latex gloves - Safety goggles - Distilled water from the same source - Distilled water bottle pumps from the same source as all distilled water being used - Fume hood lab working station Safety Precautions: - Hydrochloric acid is corrosive, and should be handled with care. Should not come in contact with skin, or be ingested (Sciencelab, 2010). - Zinc is slightly irritant to skin, eyes, and should not be ingested or inhaled. - Safety goggles and latex gloves should be worn at all times during the investigation (Sciencelab, 2010). - Waste products from the all reactions taking place should be disposed of properly, with the assistance of teacher Procedure: Part 1: 1. ...read more.


8. 1 sample of the pre-cut piece of solid zinc metal strip was placed on the weighing boat using tweezers, and on the electronic milligram balance. The mass was recorded to the nearest 0.001g. 9. The piece of solid zinc metal was then placed in the 500cm3 beaker labeled 'Beaker DT1' using tweezers, and a stopwatch was immediately started. Qualitative observations were recorded. 10. Another clean, dry, and empty 50cm3 beaker, labeled 'Beaker DRT1' was massed out on the electronic milligram balance. Its mass was recorded to the nearest 0.001g. 11. After exactly 1 minute had elapsed, the 500cm3 beaker labeled DT1 was decanted of its hydrochloric acid solution, making sure that the zinc metal strip remained. (The solution was decanted into a waste beaker) The remaining zinc was then placed (with the use of tongs) in another clean, and dry 50cm3 beaker that was already massed, labeled 'Beaker DRT1', in which it was washed with distilled water from distilled water bottle pumps. The water was then decanted from the 50cm3 beaker into a waste beaker. 12. The beaker, labeled DRT1, containing the recently rinsed zinc metal strip that reacted with the hydrochloric acid solution for one minute, was then placed on a hot plate set to low heat, and allowed to dry off for 5 minutes. 13. After 5 minutes of heating, the beaker was then set aside, and allowed to cool for 2 minutes, and then placed on the electronic milligram balance. The mass of 'Beaker DRT1' with its sample of dried zinc metal strip that had recently reacted with the hydrochloric acid solution was recorded to the nearest 0.001g. 14. Steps 1-13 were done for two more trials to ensure precision in the data collected. However, the beaker labels for trial two were: DT2/DRT2 and trial three: DT3/DRT3 15. The lab area was cleaned, and hands were washed. Any solid waste remaining was placed in a designated waste container, and any liquid waste was disposed of accordingly. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Calcium Carbonate and Hydrochloric Acid

    One can see that all recordings, besides one (0,1779g), are on the trend line, which means that the recordings are not random and that the experiment with the powder most likely went good without noticeable errors. The recording that is not on the trend line could have been caused by

  2. IB chemistry revision notes

    If a species has a positive charge take away 1. If it is negative add one. 5. Divide total electrons by 2 --> gives the number of electron pairs. 6. Count the number of bonds and with the number of electron pairs calculate how many are bond pairs and how many are lone pairs.

  1. Design Lab, HCl + Marble chips

    The relation between the concentration of acid and mass of CO2 is directly proportional. This is because, as the concentration of acid increases there are more H+ ions in the system. This gives the CaCO3 atoms to combine with the extra H+ ions and then produce more of the reactants, which includes CO2 atoms.

  2. Aim: To calculate the activation energy (EA) for the reaction between Br- and BrO3- ...

    This can be observed in the Maxwell-Botlzmann curve. Fig 1: Maxwell-Boltzmann distribution curves for particles at 273 and 283 K. The diagram above shows that at higher temperatures, more particles have higher values for kinetic energy and the peak of the curve shifts to the right. At higher temperatures there is an increase in collision frequency due to

  1. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    measured in order to determine the amount of pressure present while the reaction is ongoing. Once the above values; volume, temperature, pressure are known it is possible to determine the number of moles of carbon dioxide that will form in the reaction using the ideal gas law which is PV=nRT, R being the constant.


    Uncertainties Volume of 1.0 Molar Aqueous NiSO4 solution (dm3) Volume of Deonized Water (dm3) Total Error for Concentration of NiSO4(mol dm-3) 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Example: At a concentration of 0.5M nickel sulphate solution: Total Error for Concentration of NiSO4: Absorbency Error of Measurement: Conclusion & Evaluation: The relationship between the concentration of

  1. To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

    Lastly, another factor that could be responsible for high accuracy is that while making the solutions of substance Z, not a single visible droplet of substance Z solution was left behind because the beaker had a non-stick coating on its inner walls and on top of that, all of us

  2. Objective: To investigate the order of oxidizing ability of the halogens Cl2, Br2, and ...

    the group ,so it cannot oxidize the halide ion which is higher than it in the group. Therefore there will be no colour changes in that reaction. Br2 + 2 Cl- no reaction I2 + 2 Cl- no reaction During the experiment, hexane was added into the halogen halide solution.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work