• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Calculating the Molar Volume of a Gas Experiment.

Extracts from this document...

Introduction

Molar Volume of a Gas Data Trial 1 Trial 2 Volume (cm3) ±0.5 37.0 cm3 40.4 cm3 Atmospheric Pressure (kPa) ±0.5 102.2 kPa 102.2 kPa Temperature of water (°C) ±0.5 19.0 °C 22.0 °C Calculations Moles of magnesium 1 meter of magnesium = 1.78 g ±0.01 ∴ 2 cm of magnesium = 1.78*2/100 = 0.0356 g ±0.01 Moles of Mg = Mass / Molar Mass Moles of Mg = 0.0356/24.31 = 0.00146 % uncertainty in moles = 0.01+0 = 0.01% % uncertainty to absolute uncertainty for moles = 0.01*0.00146/100 = 0.0000000464 ∴ Absolute uncertainty of moles = 0.00146000 mol ± 0.00000146 Trial 1 Partial Pressure of Hydrogen Partial Pressure of Hydrogen = Atmospheric Pressure – Vapor Pressure of water Partial Pressure of Hydrogen = 102.2 – 2.2 Partial Pressure of Hydrogen = 100.0 kPa % uncertainty for Atmospheric Pressure = 0.05/102.2*100 = 0. ...read more.

Middle

Volume Molar Volume = 23.7 dm3/mol % uncertainty for Volume = 2.01% % uncertainty for Moles = 0.01% % uncertainty for Molar Volume = 2.01+0.01 = 2.02% % uncertainty to absolute uncertainty for Molar Volume = 2.02*23.7/100 = ±8.52 ∴ Absolute uncertainty for Molar Volume = 23.7 dm3/mol ±8.52 Molar Volume = 23.7 dm3/mol ±8.52 Trial 2 Partial Pressure of Hydrogen Partial Pressure of Hydrogen = Atmospheric Pressure – Vapor Pressure Partial Pressure of Hydrogen = 102.2 – 2.6 Partial Pressure of Hydrogen = 99.6 kPa Volume occupied by one mole of hydrogen at STP P1V1/T1 = P2V2/T2 99.6*0.0404/295 = 100*V/273 V = 0.0372 dm3 Molar Volume Moles = Volume/Molar Volume 0.00146 = 0.0372/Molar Volume Molar Volume = 25.5 dm3/mol Average of both Trials = (25.5+23.7)/2 = 24.06 Evaluation I assumed that the temperature inside the eudiometer is equal to ...read more.

Conclusion

I used ideal gas law to find the volume occupied by one mole of hydrogen at STP but hydrogen is not an ideal gas. To get better results, I could have done more trials. Conclusion The aim of the experiment was to find the molar volume of Hydrogen. I got 24.06 (average) as the volume of one mole of hydrogen at STP. In the first trial, the molar volume found is 23.7 dm3/mol with an uncertainty of ±8.52. In the second trial, the molar volume is 25.5 dm3/mol. The molar volume of the second trial is higher because the yield of hydrogen in the second trial was higher than the first. The temperature in the second trial was higher as well. The theoretical results are 22.4 dm3. The difference is due to the errors made during the experiment and the assumptions I made. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB IA: Gas Law Experiment - testing Boyles Law, Charles Law and Ideal Gas ...

    molecular mass of unknown compound can be determined using this formula, M= m RT PV =(0.1036 g)( 8.134JK-1mol-1)( 376.42 K) (97.7253 kPa)( 0.155 dm3) =20.9 gram mol-1 Limitations and recommendations: Limitations Recommendations The clip that is clipping the tube might not be air thigh We can fold the tube several

  2. Aim: To find the molar mass of butane, by finding the number of moles ...

    The butane rose to the top of the burette, since butane is less dense than water. This caused the pressure at the top of the butane to be greater than the atmospheric pressure. Since liquids are mostly incompressible, the increase pressure at the top, created a force on the top of the water column, pushing it down.

  1. Gas laws, investigate quantitatively the relationship between the pressure and volume for nitrogen ...

    Also, to make sure the needle of the gauge did not stick, the gauge was gently tapped before a pressure reading was taken. Design for the collection of sufficient relevant data: 1. To begin with, the 20.0 cm3 syringe was filled with 20.0 cm3 of nitrogen gas, the stopcock closed,

  2. Chemitry Lab - Molar Volume of a Gas

    * When Magnesium ribbon was added, it began to corrose in the HCl * Instantly after adding the Mg ribbon to the hydrochloric acid, temperature in the reaction flask started to rise as a chemical reaction took place in the flask.

  1. Molar volume of hydrogen

    The bubbles moved in a circular motion towards to the top after popping, the gas is released into the tube. Errors within Experiment: Air bubbles in the gas measuring cylinder before the Magnesium was added.

  2. Determination of the molar volume of hydrogen gas

    = 2626.9431 Pa Room pressure (Pa) - Vapour pressure of water (Pa) 98975.25 Pa - 2626.9431 Pa = 96348.3069 Pa p(H2) = 96348.3069 Pa p(H2) + p(H2O) = p(room) 2626.9431 + 96348.3069 = 98975.25 p(room) Calculation of molar volume for hydrogen gas at 0 C and 1 atmosphere P1 x

  1. Determining the relationship between the pressure and volume of a confined gas - Boyle's ...

    Data Collection and Processing? DCP ________________ ________________ 1. Data Collection ________________ Table2.1 shows raw data recorded from the experiment. 1Volume(dm30.0005) 2Pressure (KPa0.1) 3Average Pressure T1 T2 T3 Tav 0.060 91.8 91.8 91.8 91.8 0.055 100.2 99.2 100.2 99.9 0.050 110.4 109.5 109.5 109.8 0.045

  2. The chemistry of atmospheric and water pollution.

    The similarity between the oxygen molecule, oxygen free radical and ozone is that they are all forms of the element oxygen. However the difference between the oxygen free radical, ozone and oxygen is that ozone and oxygen molecules have full outer shell of electrons which make them relatively stable compared to oxygen free radical.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work