• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month
Page
1. 1
1
2. 2
2
3. 3
3
4. 4
4

# Calculating the Molar Volume of a Gas Experiment.

Extracts from this document...

Introduction

ï»¿Molar Volume of a Gas Data Trial 1 Trial 2 Volume (cm3) ±0.5 37.0 cm3 40.4 cm3 Atmospheric Pressure (kPa) ±0.5 102.2 kPa 102.2 kPa Temperature of water (°C) ±0.5 19.0 °C 22.0 °C Calculations Moles of magnesium 1 meter of magnesium = 1.78 g ±0.01 ∴ 2 cm of magnesium = 1.78*2/100 = 0.0356 g ±0.01 Moles of Mg = Mass / Molar Mass Moles of Mg = 0.0356/24.31 = 0.00146 % uncertainty in moles = 0.01+0 = 0.01% % uncertainty to absolute uncertainty for moles = 0.01*0.00146/100 = 0.0000000464 ∴ Absolute uncertainty of moles = 0.00146000 mol ± 0.00000146 Trial 1 Partial Pressure of Hydrogen Partial Pressure of Hydrogen = Atmospheric Pressure – Vapor Pressure of water Partial Pressure of Hydrogen = 102.2 – 2.2 Partial Pressure of Hydrogen = 100.0 kPa % uncertainty for Atmospheric Pressure = 0.05/102.2*100 = 0. ...read more.

Middle

Volume Molar Volume = 23.7 dm3/mol % uncertainty for Volume = 2.01% % uncertainty for Moles = 0.01% % uncertainty for Molar Volume = 2.01+0.01 = 2.02% % uncertainty to absolute uncertainty for Molar Volume = 2.02*23.7/100 = ±8.52 ∴ Absolute uncertainty for Molar Volume = 23.7 dm3/mol ±8.52 Molar Volume = 23.7 dm3/mol ±8.52 Trial 2 Partial Pressure of Hydrogen Partial Pressure of Hydrogen = Atmospheric Pressure – Vapor Pressure Partial Pressure of Hydrogen = 102.2 – 2.6 Partial Pressure of Hydrogen = 99.6 kPa Volume occupied by one mole of hydrogen at STP P1V1/T1 = P2V2/T2 99.6*0.0404/295 = 100*V/273 V = 0.0372 dm3 Molar Volume Moles = Volume/Molar Volume 0.00146 = 0.0372/Molar Volume Molar Volume = 25.5 dm3/mol Average of both Trials = (25.5+23.7)/2 = 24.06 Evaluation I assumed that the temperature inside the eudiometer is equal to ...read more.

Conclusion

I used ideal gas law to find the volume occupied by one mole of hydrogen at STP but hydrogen is not an ideal gas. To get better results, I could have done more trials. Conclusion The aim of the experiment was to find the molar volume of Hydrogen. I got 24.06 (average) as the volume of one mole of hydrogen at STP. In the first trial, the molar volume found is 23.7 dm3/mol with an uncertainty of ±8.52. In the second trial, the molar volume is 25.5 dm3/mol. The molar volume of the second trial is higher because the yield of hydrogen in the second trial was higher than the first. The temperature in the second trial was higher as well. The theoretical results are 22.4 dm3. The difference is due to the errors made during the experiment and the assumptions I made. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Chemistry essays

1. ## IB IA: Gas Law Experiment - testing Boyles Law, Charles Law and Ideal Gas ...

molecular mass of unknown compound can be determined using this formula, M= m RT PV =(0.1036 g)( 8.134JK-1mol-1)( 376.42 K) (97.7253 kPa)( 0.155 dm3) =20.9 gram mol-1 Limitations and recommendations: Limitations Recommendations The clip that is clipping the tube might not be air thigh We can fold the tube several

2. ## Aim: To find the molar mass of butane, by finding the number of moles ...

due to water droplets on the lighter remained constant throughout the experiment and thus could be ignored. * We filled the burette completely with water, to ensure that no gases were inside the burette before the trial, which would have affect the pressure readings.

1. ## Chemitry Lab - Molar Volume of a Gas

* Moisture and (fog) blocked the view of the reaction * Immediately after adding the Mg ribbon, hydrogen bubbled to the collection flask * Hydrogen bubbled to the flask for about a minute,stopping soon after the ribbon had corrosed in to the HCl.

2. ## Molar volume of hydrogen

The bubbles moved in a circular motion towards to the top after popping, the gas is released into the tube. Errors within Experiment: Air bubbles in the gas measuring cylinder before the Magnesium was added.

1. ## Determination of the molar volume of hydrogen gas

= 2626.9431 Pa Room pressure (Pa) - Vapour pressure of water (Pa) 98975.25 Pa - 2626.9431 Pa = 96348.3069 Pa p(H2) = 96348.3069 Pa p(H2) + p(H2O) = p(room) 2626.9431 + 96348.3069 = 98975.25 p(room) Calculation of molar volume for hydrogen gas at 0 C and 1 atmosphere P1 x

2. ## Gas laws, investigate quantitatively the relationship between the pressure and volume for nitrogen ...

4. In order to check there was no leaking out of the syringe, the gas was compressed to 10.0 cm3, and it was found that the pressure reading remained the same for a oneminute period. 5. Before any readings were taken, practice was obtained in moving the plunger in very slowly in order to maintain constant temperature.

1. ## Determining the relationship between the pressure and volume of a confined gas - Boyle's ...

(2012).Mathematics Standard Level. New York: Oxford ________________ * R ? Ideal/Universal Gas Constant Boyle?s Law states that: Hence, nRT = 5.1589 91.8 = 16.67 * (0.0025 * 292.85 * R) R= 7.52 KPa.dm3.mol-1.Kelvin-1 ________________ *Temperature of syringe = 292.85 Kelvin ________________ *Number of moles of trapped gas (Air) = 0.0025 moles ________________ Utc.edu.

2. ## The chemistry of atmospheric and water pollution.

Gradually the uses for CFCs grew and there were large amounts of CFCs emitted into the atmosphere due to their extensive use. Some of its uses and hence origins were: Refrigerants in air conditioners and refrigerators Solvents in dry-cleaning Propellants in aerosol spray cans (deodorants, insecticides)

• Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to