• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Calculating the Molar Volume of a Gas Experiment.

Extracts from this document...

Introduction

Molar Volume of a Gas Data Trial 1 Trial 2 Volume (cm3) ±0.5 37.0 cm3 40.4 cm3 Atmospheric Pressure (kPa) ±0.5 102.2 kPa 102.2 kPa Temperature of water (°C) ±0.5 19.0 °C 22.0 °C Calculations Moles of magnesium 1 meter of magnesium = 1.78 g ±0.01 ∴ 2 cm of magnesium = 1.78*2/100 = 0.0356 g ±0.01 Moles of Mg = Mass / Molar Mass Moles of Mg = 0.0356/24.31 = 0.00146 % uncertainty in moles = 0.01+0 = 0.01% % uncertainty to absolute uncertainty for moles = 0.01*0.00146/100 = 0.0000000464 ∴ Absolute uncertainty of moles = 0.00146000 mol ± 0.00000146 Trial 1 Partial Pressure of Hydrogen Partial Pressure of Hydrogen = Atmospheric Pressure – Vapor Pressure of water Partial Pressure of Hydrogen = 102.2 – 2.2 Partial Pressure of Hydrogen = 100.0 kPa % uncertainty for Atmospheric Pressure = 0.05/102.2*100 = 0. ...read more.

Middle

Volume Molar Volume = 23.7 dm3/mol % uncertainty for Volume = 2.01% % uncertainty for Moles = 0.01% % uncertainty for Molar Volume = 2.01+0.01 = 2.02% % uncertainty to absolute uncertainty for Molar Volume = 2.02*23.7/100 = ±8.52 ∴ Absolute uncertainty for Molar Volume = 23.7 dm3/mol ±8.52 Molar Volume = 23.7 dm3/mol ±8.52 Trial 2 Partial Pressure of Hydrogen Partial Pressure of Hydrogen = Atmospheric Pressure – Vapor Pressure Partial Pressure of Hydrogen = 102.2 – 2.6 Partial Pressure of Hydrogen = 99.6 kPa Volume occupied by one mole of hydrogen at STP P1V1/T1 = P2V2/T2 99.6*0.0404/295 = 100*V/273 V = 0.0372 dm3 Molar Volume Moles = Volume/Molar Volume 0.00146 = 0.0372/Molar Volume Molar Volume = 25.5 dm3/mol Average of both Trials = (25.5+23.7)/2 = 24.06 Evaluation I assumed that the temperature inside the eudiometer is equal to ...read more.

Conclusion

I used ideal gas law to find the volume occupied by one mole of hydrogen at STP but hydrogen is not an ideal gas. To get better results, I could have done more trials. Conclusion The aim of the experiment was to find the molar volume of Hydrogen. I got 24.06 (average) as the volume of one mole of hydrogen at STP. In the first trial, the molar volume found is 23.7 dm3/mol with an uncertainty of ±8.52. In the second trial, the molar volume is 25.5 dm3/mol. The molar volume of the second trial is higher because the yield of hydrogen in the second trial was higher than the first. The temperature in the second trial was higher as well. The theoretical results are 22.4 dm3. The difference is due to the errors made during the experiment and the assumptions I made. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB IA: Gas Law Experiment - testing Boyles Law, Charles Law and Ideal Gas ...

    molecular mass of unknown compound can be determined using this formula, M= m RT PV =(0.1036 g)( 8.134JK-1mol-1)( 376.42 K) (97.7253 kPa)( 0.155 dm3) =20.9 gram mol-1 Limitations and recommendations: Limitations Recommendations The clip that is clipping the tube might not be air thigh We can fold the tube several

  2. Aim: To find the molar mass of butane, by finding the number of moles ...

    The butane rose to the top of the burette, since butane is less dense than water. This caused the pressure at the top of the butane to be greater than the atmospheric pressure. Since liquids are mostly incompressible, the increase pressure at the top, created a force on the top of the water column, pushing it down.

  1. Gas laws, investigate quantitatively the relationship between the pressure and volume for nitrogen ...

    Also, to make sure the needle of the gauge did not stick, the gauge was gently tapped before a pressure reading was taken. Design for the collection of sufficient relevant data: 1. To begin with, the 20.0 cm3 syringe was filled with 20.0 cm3 of nitrogen gas, the stopcock closed,

  2. The Molar Volume of a Gas

    : 29.4 cm3 Volume of MgCl2(aq)(in the big beaker): 20.6 cm3 Trial 3: Lenght of Magnesium ribbon used: 3.6 cm Mass of Magnesium Ribbon used: 0.0455625 g. Volume of H2(after the reaction): 34.2 cm3 Volume of MgCl2(aq): 15.8 cm3 Volume of H2(in the big beaker, 1 atm)

  1. Chemitry Lab - Molar Volume of a Gas

    * Moisture and (fog) blocked the view of the reaction * Immediately after adding the Mg ribbon, hydrogen bubbled to the collection flask * Hydrogen bubbled to the flask for about a minute,stopping soon after the ribbon had corrosed in to the HCl.

  2. Molar volume of hydrogen

    While the magnesium was in the HCl it bubbled, which floated vertically to the top of the gas collecting tube. When the magnesium was first added it reacted rapidly producing bubbles at a quick rate, but as the experiment went on, the speed and bubbles became more gradual and slower

  1. Determining the relationship between the pressure and volume of a confined gas - Boyle's ...

    Connect Pressure Sensor to Plastic Syringe ________________ 1. Push the Piston until the the tip of the piston reaches the mark of the required volume ________________ 1. Record Pressure from Data Logget ________________ ________________ ________________ ________________ ________________ ________________ ________________ ________________ ________________ ________________ ________________ 1. Data Collection and Processing? DCP ________________ ________________ 1.

  2. The chemistry of atmospheric and water pollution.

    Point 4.8 ? Identify the origins of chlorofluorocarbons (CFCs) and halons in the atmosphere. Haloalkanes are carbon compounds that contain 1 or more halogen atoms in place of H atoms in the hydrocarbon. Chlorofluorocarbons (CFCs) are a class of haloalkanes in that they contain chlorine and fluorine atoms which substitute all of the hydrogen atoms in the compound.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work