• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Decomposition Lab

Extracts from this document...

Introduction

D0ecomposition of Hydrogen Peroxide Lab Introduction: Hydrogen Peroxide (2H2O2) is a weak acid, that is both odourless and colourless, however it acts a powerful bleaching agent. It has many uses such as acting as a disinfector, oxidiser and antiseptic, etc. The decomposition of hydrogen peroxide always results in water and oxygen (as seen below) 2H2O2(aq) --> 2H2O(l) + O2(g) However, independantly it's rate of reaction is quite slow and it would take a significant amount of time to note an changes in the process. Consequently, many scientist use catalysts to speed up the process. These catalysts are usually transitional metals or enzymes. Each catalyst has a different effect on the original solution. ...read more.

Middle

The pressure of the reaction will be recorded throughout the expirement to calculate how the catalysts affect the reaction by measuring the amount of oxygen released, hence determining the affects of different catalysts and concentrations of the process. Purpose: How do two different catalysts (manganese dioxide and potassium iodide) affect the rate of reaction in decomposing two different molar concentration (2% and 4%) solutions of hydrogen peroxide. Variables: Independant: The catalyst used (MnO2 or KI) and the concentration of the hydrogen peroxide (2% and 4%) Dependent: The amount of the catalyst needed in order to cause a noticable reaction and the amount of oxygen released, hence the amount of pressure. ...read more.

Conclusion

75] Procedure: Step 1: Pour 15 ml of the 2% hydrogen peroxide into 2 test tubes, and label one as 2% 2H202 - MnO2 and label the other on as 2% 2H202 - KI Step 2: Complete Step # 1, however substitute the 2% with 4% Step 3: Step up Lab Pro and Pressure Sensor Step 4: Set up the titration (burette, clamp and stand) Step 5: Pour the manganese dioxide into the burette and place the 2% - MNO2 test tube under the burette and titrate the catalyst into the test tube, while reading the pressure. Step 6: Record the pressure as the reaction bubbles out Step 7: Repeat the date for 4 % 2H2O2 and as well as the KI for both 2% 2H2O2 and the 4% 2H2O2. Step 8: Record the 0results in a table and conclude and analyze the data. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    A pipette was chosen over a 50cm3 measuring cylinder to transfer solution, because it is more accurate, with ?0.06cm3 of error. A pipette has narrow diameter of inner wall, which gives a significant meniscus. It has been washed by distilled water and the solution to be delivered before use, to clean the inner wall of the pipette.

  2. THE CATALYTIC DECOMPOSITION OF HYDROGEN PEROXIDE

    Add in Manganese (V) Oxide until the mass of the conical flask and its contents increases by 1 gram. 3. Do the same for the variables of 2, 3, 4 and 5 grams. To measure the volume of Hydrogen Peroxide: 1.

  1. Potassium Iodide Lab

    chromate Lead(II) sulfide Other cations Sodium nitrate Magnesium nitrate IV. Materials: * Electronic scale * Lead Nitrate * Potassium Iodide * Beaker * Graduated Cylinder * Funnel * Filter paper * Pipettes * Water V. Procedures: 1. Materials were gathered and then specific concentration ratio was received (water:solute 1:9) 2.

  2. DCP+CE Analysis of a Hydrogen Peroxide Solution

    in calculating average Amount of KMnO4 Trial 1 = 44.5 - 23.0 = 21.5 Trial 2 = 20.6 - 0.00 = 20.6 Trial 3 = 42.8 - 22.0 = 20.8 Trial 4 = 20.6 - 0.00 = 20.6 Average amount of KMnO4 used is 20.7ml � 0.15ml Uncertainty for calculating

  1. Decomposition of Hydrogen Peroxide Lab

    Pressure (kPa)�0.2% 0 100.8 10 104.0 20 105.2 30 106.8 40 110.2 50 115.0 60 120.2 70 125.4 80 130.9 90 135.2 100 139.5 110 144.3 120 148.8 130 153.1 140 157.5 150 161.1 160 165.2 Data Processing 1) Finding Initial Rates from Slope Note: The trials shown from graphs 1-3 were conducted at 2)

  2. Rates of Reaction Lab

    Place the 0.2g of zinc dust in the conical flask. 6. Using a 100 ml measuring cylinder, measure out 20 ml of 1M hydrochloric acid. 7. Pour the 20 ml of hydrochloric acid into the conical flask with zinc dust and re-insert the stopper immediately.

  1. Investigating Factors that Affect the Rate of Reaction of the Decomposition of Hydrogen ...

    H2O2 and using a 10 mL pipette transfer 4 mL of H2O2 from a container into the 10 mL graduated cylinder. Take a 10 mL test tube and add fill 4 mL of H2O2 from the 10 mL graduated cylinder into the 10 mL test tube.

  2. Chemistry Titration Acid Base Lab

    we wanted to ensure we had enough of the solution for the whole lab. Therefore the bubbles caused an inaccurate volume reading. The bubbles occupy a particular amount of volume and this means that the volume in the burette would in fact be less than the amount reported during trials.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work