• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Decomposition of Hydrogen Peroxide Lab

Extracts from this document...

Introduction

Purpose To find the activation energy of the following reaction: Data Collection Part 1 Element Molarity 0.88 M (3%) 0.5M Volume Temperature Table 1-Increase in Pressure over Time as 0.88M and 0.5M react at 21.5 Time (s) Pressure (kPa)�0.2% 10 103.6 20 104.0 30 104.0 40 104.0 50 104.5 60 105.4 70 105.9 80 107.0 90 108.6 100 109.7 110 111.1 120 113.4 130 115.4 140 117.2 150 119.3 160 121.8 170 124.0 180 125.9 * Uncertainty of pressure based on instrument stated uncertainty. Sample Calculation Converting Concentration of into Molarity Part 2 Element Molarity 0.88 M (3%) 0.25M Volume Temperature Table 2-Increase in Pressure over Time as 0.88M and 0.25M react at 21.5 Time (s) Pressure (kPa)�0.2% 30 102.0 40 102.2 50 102.7 60 102.9 70 104.5 80 104.5 90 104.7 100 105.6 110 106.3 120 106.5 130 107.0 140 108.1 150 108.8 160 110.0 170 110.6 180 111.3 Qualitative Observations In general for the 4 trials, the following observations were made: * Liquid turned a dark shade of yellow once the reactants were mixed * Once the reactants were mixed, there was a steady increase in bubbling Part 3 Element Molarity 0.44 M (1.5%) ...read more.

Middle

Conclusion In conclusion it was found that the activation energy of the decomposition of hydrogen peroxide with the help of the catalyst KI is . When compared to an actual value there was a percent difference of 43%. In fact the actual value that was used is the activation energy of hydrogen peroxide in the absence of a catalyst. So in reality it is likely that a catalyst would cause the activation energy to be even smaller, and the percent difference would be even greater. The only reasonable explanation as to why the calculated activation energy is so much greater is that somewhere during the experiment a random error occurred but since only two trials were done, it is impossible to pinpoint where it exactly occurred. When looking at graphs 1-4 it can be seen that as time went on the pressure increased exponentially. This makes sense because over time the amount of gas increased, and so the pressure would increase too. In addition in graphs 1-4, if a curved line of best fit were to be plotted, than the y-intercept would show the pressure of the room at the moment the experiment was conducted. ...read more.

Conclusion

Lastly, when the test tube was put in the water bath, the temperature of the water bath was constantly changing because the temperature of the water was relatively lower than the room temperature. This in turn is what caused fluctuation in the temperature readings. This in turn could have also caused the initial rate to vary because as discussed earlier, even the slightest change in temperature causes the initial rate to change. This experiment can be improved in many ways. One of the main things that can be done is that the experiment should be conducted at different temperatures so that at least a minimum of 5 k values against 1/T can be plotted on graph 5. In addition, the temperature increments should have a relatively broad range, which in turn will make the data and the trends clearer. In addition, the experiment should be conducted on the same day so as the temperature can be kept constant for certain k values. In order to keep the temperature of the water bath constant, the experiment should be conducted in a closed environment so that less energy is lost to the environment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    250cm3 volumetric flask A volumetric flask is used to make up an accurate and known volume standard solution. Pipette A pipette is used to deliver an accurate volume of a solution, usually 25cm3. It has to be washed with distilled water and the solution once before use.

  2. THE CATALYTIC DECOMPOSITION OF HYDROGEN PEROXIDE

    Thus, my hypothesis is that the shape of the curve would be that the time taken for the reaction to stop would be decreasing but would eventually hit a point where the time taken will not go down any further.

  1. Change of Potential Difference in Voltaic Cells Lab Report

    Zinc Sulfate Hepta-hydrate The mass of zinc sulfate needed can also be calculated using the formula: Mass = number of moles molar mass. Zinc sulfate salt can be as mono hydrate or hepta hydrate, read the formula on the package for correct calculations.

  2. Aim: Using an iodine clock reaction to find the order of hydrogen peroxide and ...

    of the H2O2 is doubled, the rate falls, but not at a constant or perfectly exponential rate. This is probably due to the fact that there were large uncertainties present in the experiment, meaning there will be an error, which is apparent in the results above.

  1. Hydration Lab

    0.024 � 0.006 g H2O = 0.24 � 25% g H2O = 4 � 25% g H2O 0.006 � 0.0007 g CuSO4 0.006 � 12% g CuSO4 1 � 12% g CuSOB ? There are 4 water molecules for each molecule of CuSO4, with an error of 37%.

  2. Chemistry lab reort-molar volume of hydrogen

    The surface of the HCl solution falls rather quickly. The tiny flow of liquid was still present in this trial. No fragment fell from the Magnesium ribbon and no bubbles leak out of the burette. No obvious mistakes were made during the operation. It took a less time for the reaction to go to the completion than the first trial.

  1. Organic lab. Comparison of alkanes and alkenes

    This is the soot collecting on the basin. Therefore, a incomplete combustion occurred, in which the bi products of CO and carbon were released. Indeed, the soot is the amount of carbon produced by the combustion. Since the basin of the hexene was darker than that of the hexane, we can deduce that the combustion of hexene is more incomplete.

  2. Reaction Rate

    Collect all necessary equipment from the equipment table- all equipment should be in one tray. 1. Setup the retort stand and clamp on a stable desk. The clamp should be fixed approximately half way up the stand. 1. Open up Photo Booth or a similar video/image-capturing program on a laptop

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work