• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Design a practical investigation into the formula of a metal oxide.

Extracts from this document...

Introduction

Design a practical investigation into the formula of a metal oxide. Aim: to determine the formula of magnesium oxide. Hypothesis: I think that the formula for the metal oxide magnesium oxide, will be MgO. Variables Independent: the mass of magnesium is manipulated as different sizes are cut from the roll of magnesium. The mass is the variable that is altered. Dependant: the mass of magnesium oxide formed will be the measured variable as it enables us to determine the formula for magnesium oxide. Controlled Each strip of magnesium was taken from the same roll. If magnesium ribbons were taken from various rolls, the reaction with oxygen and the formation of magnesium oxide would be affected. The same roll ensured that all the magnesium used was the same. The magnesium was scraped with sand paper. This was to remove any oxygen that may have formed onto it. Any oxygen on the magnesium would have altered the results. ...read more.

Middle

Mass of crucible + lid 31.15g Mass of crucible + lid + magnesium 31.23g Mass of crucible + lid + magnesium oxide 31.27g Observation After heating the magnesium strongly for few minutes it began to melt and glowed with a bright light. Lifting the lid caused the magnesium to glow even more brightly and white smoke escaped from the crucible. Magnesium turned to a grayish - white powder and no longer glowed with a bright light. Mass of magnesium = 31.23 - 31.15 = 0.08g Mass of magnesium oxide = 31.27 - 31.15 = 0.12g Mass of oxygen combined with magnesium = 0.12 - 0.08 = 0.04g Analysis Empirical formula Magnesium Oxygen Amount 0.08g 0.04g Moles 0.08 / 24.31 = 0.0033 0.04 / 16.00 = 0.0025 Ratio 0.0033 / 0.0025 = 1.32 0.0025 / 0.0025 = 1 1 1 Empirical formula is MgO. Error analysis Percent age uncertainty = error in balance *100 Mass of substance = 0.01/ 0.08 *100 =12.5% Conclusion and evaluation The formula for the metal oxide, magnesium oxide was MgO. ...read more.

Conclusion

the high temperatures may have caused the crucible to react. This would have affected the products formed. Lifting the lid may have lead to some of the products escaping and the product weighing less, therefore the ratio of magnesium to oxygen would be incorrect. Weighing the magnesium oxide while it was still hot would have caused an error as the products would have expanded and they would be heavier than they actually are. Other factors contributed to the precision of the results obtained. Scraping the magnesium ensured that pure magnesium was used and no other products were formed. Repetition of the experiment enabled a more accurate result to be achieved. Improvements The magnesium should be burnt in pure oxygen. This would reduce the formation of products other than magnesium oxide and would give more accurate results. A stronger crucible should be used so that it doesn't react during the high temperatures reached when the experiment is going on. Pure magnesium should be used to prevent the formation of products other than magnesium. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Analysis of the Nitrogen Content of Lawn Fertiliser

    Conclusion/Evaluation: Fertiliser is a natural or synthetic chemical substance or mixture that is used to enrich soil in order to promote plant growth. It influences grass colour, ability to recover from stress, and helps prevent weed invasions and diseases. Plants require more than a dozen different chemical elements but nitrogen,

  2. Experiment - The Empirical Formula of Magnesium Oxide

    m(Crucible+lid)= 32.230-32.144= 0.086g m(MgO)= m(Crucible+lid+MgO)- m(Crucible+lid)= 32.287-32.144= 0.143g m(O)= m(MgO)- M(Mg)= 0.143-0.086= 0.057g Absolute uncertainties of the mass of magnesium, magnesium oxide and oxygen Due to subtraction was employed, to calculate the net mass of magnesium and magnesium oxide, the absolute uncertainties were added.

  1. Empirical Formula of Magnesium Oxide

    Mass of crucible, lid and Magnesium ribbon (g) Mass of crucible, lid and content after the reaction (g) 1 31.44�0.01 31.65�0.01 31.77�0.01 2 32.14�0.01 32.34�0.01 32.34�0.01 3 31.56�0.01 31.76�0.01 31.83�0.01 4 32.44�0.01 32.63�0.01 32.76�0.01 Processing Raw Data: Find the average mass of oxygen in the experiment Trial 1: - =

  2. Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

    + 0.0001= 32.9232g Mass of magnesium inside crucible with the lid ( in grams) + 0.0001 =33.1472g Final mass of (MgO) inside crucible with lid in grams + 0.0001=33.2711g Mass of MgO inside crucible with lid in grams after �heating to constant mass`=33.2605g Processed Data: Percentage uncertainty= 0.04% 1.Mass of magnesium (in grams)

  1. Discovering the formula of MgO

    When it came into contact with the oxygen, the magnesium started glowing extremely bright, and intensely white. The glow became orange after some time. The magnesium ribbon then turned into a white powder. Processed data: Raw Data Processed data Serial No.

  2. Finding the empirical formula of magnesium oxide

    From the results of the calculation it is apparent that the ratio of the number of moles of oxygen to the number of moles of magnesium is one to one (1:1). Hypothesis is accepted. The experimental mass of MgO is a bit different from the theoretical value with 6% of percentage error.

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    it would not be possible to draw a good graph using points that are unevenly spaced apart Time interval is taken to be 5 seconds between each reading. Room temperature and pressure Conditions under which the experiments are performed should remain constant The experiments were carried out in the same room and on the same day.

  2. Chemistry Investigation to find the Empirical Formula of Magnesium Oxide

    A graph is included to assist in the comparison of the theoretical empirical formulae to the experimented empirical formulae in a visual format. Sample Calculations To acquire the data required to evaluate the empirical formulae, the mass and moles of Mg, O and MgO were required to be calculated first.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work