• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Design a practical investigation into the formula of a metal oxide.

Extracts from this document...

Introduction

Design a practical investigation into the formula of a metal oxide. Aim: to determine the formula of magnesium oxide. Hypothesis: I think that the formula for the metal oxide magnesium oxide, will be MgO. Variables Independent: the mass of magnesium is manipulated as different sizes are cut from the roll of magnesium. The mass is the variable that is altered. Dependant: the mass of magnesium oxide formed will be the measured variable as it enables us to determine the formula for magnesium oxide. Controlled Each strip of magnesium was taken from the same roll. If magnesium ribbons were taken from various rolls, the reaction with oxygen and the formation of magnesium oxide would be affected. The same roll ensured that all the magnesium used was the same. The magnesium was scraped with sand paper. This was to remove any oxygen that may have formed onto it. Any oxygen on the magnesium would have altered the results. ...read more.

Middle

Mass of crucible + lid 31.15g Mass of crucible + lid + magnesium 31.23g Mass of crucible + lid + magnesium oxide 31.27g Observation After heating the magnesium strongly for few minutes it began to melt and glowed with a bright light. Lifting the lid caused the magnesium to glow even more brightly and white smoke escaped from the crucible. Magnesium turned to a grayish - white powder and no longer glowed with a bright light. Mass of magnesium = 31.23 - 31.15 = 0.08g Mass of magnesium oxide = 31.27 - 31.15 = 0.12g Mass of oxygen combined with magnesium = 0.12 - 0.08 = 0.04g Analysis Empirical formula Magnesium Oxygen Amount 0.08g 0.04g Moles 0.08 / 24.31 = 0.0033 0.04 / 16.00 = 0.0025 Ratio 0.0033 / 0.0025 = 1.32 0.0025 / 0.0025 = 1 1 1 Empirical formula is MgO. Error analysis Percent age uncertainty = error in balance *100 Mass of substance = 0.01/ 0.08 *100 =12.5% Conclusion and evaluation The formula for the metal oxide, magnesium oxide was MgO. ...read more.

Conclusion

the high temperatures may have caused the crucible to react. This would have affected the products formed. Lifting the lid may have lead to some of the products escaping and the product weighing less, therefore the ratio of magnesium to oxygen would be incorrect. Weighing the magnesium oxide while it was still hot would have caused an error as the products would have expanded and they would be heavier than they actually are. Other factors contributed to the precision of the results obtained. Scraping the magnesium ensured that pure magnesium was used and no other products were formed. Repetition of the experiment enabled a more accurate result to be achieved. Improvements The magnesium should be burnt in pure oxygen. This would reduce the formation of products other than magnesium oxide and would give more accurate results. A stronger crucible should be used so that it doesn't react during the high temperatures reached when the experiment is going on. Pure magnesium should be used to prevent the formation of products other than magnesium. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Analysis of the Nitrogen Content of Lawn Fertiliser

    Conclusion/Evaluation: Fertiliser is a natural or synthetic chemical substance or mixture that is used to enrich soil in order to promote plant growth. It influences grass colour, ability to recover from stress, and helps prevent weed invasions and diseases. Plants require more than a dozen different chemical elements but nitrogen,

  2. Empirical Formula of Magnesium Oxide

    Mass of crucible, lid and Magnesium ribbon (g) Mass of crucible, lid and content after the reaction (g) 1 31.44�0.01 31.65�0.01 31.77�0.01 2 32.14�0.01 32.34�0.01 32.34�0.01 3 31.56�0.01 31.76�0.01 31.83�0.01 4 32.44�0.01 32.63�0.01 32.76�0.01 Processing Raw Data: Find the average mass of oxygen in the experiment Trial 1: - =

  1. Experiment - The Empirical Formula of Magnesium Oxide

    m(Crucible+lid)= 32.230-32.144= 0.086g m(MgO)= m(Crucible+lid+MgO)- m(Crucible+lid)= 32.287-32.144= 0.143g m(O)= m(MgO)- M(Mg)= 0.143-0.086= 0.057g Absolute uncertainties of the mass of magnesium, magnesium oxide and oxygen Due to subtraction was employed, to calculate the net mass of magnesium and magnesium oxide, the absolute uncertainties were added.

  2. Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

    3. White smoke . 4. Flame inside and lots of white smoke(fumes). 5. Sparkles and less smoke. 6. Smoke and white bumps on the metal. 7. Smoke. 8. Little smoke. 9. No smoke(white fluid material and residue on lid). 10. No further reaction. Raw Data: Initial mass of crucible with lid ( in grams)

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    Molarity of HCl No. of moles of HCl per unit volume should remain constant so that no, of moles of HCl remains constant. All trials, the HCl was withdrawn from the same 2.0M stock solution prepared. Table 1: Controlled Variables APPRATUS AND CHEMICALS: Quantity × Item Purpose 2 × Polystyrene cup To be used for making the calorimeter.

  2. Discovering the formula of MgO

    You may see the magnesium begin to flare up. If the lid is off for too long then the magnesium oxide product will begin to escape.

  1. Finding the empirical formula of magnesium oxide

    From the results of the calculation it is apparent that the ratio of the number of moles of oxygen to the number of moles of magnesium is one to one (1:1). Hypothesis is accepted. The experimental mass of MgO is a bit different from the theoretical value with 6% of percentage error.

  2. To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

    Due to a respectably high accuracy and consistency in all our values, I can conclude with a large magnitude of confidence that the experiment was successful and indeed the compound Z, X2CO3 was Sodium Carbonate, Na2CO3. I feel that one of our major strengths in yielding such accurate results was

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work