• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Determination of empirical formula lab report

Extracts from this document...

Introduction

SECONDARY SCHOOL DEPARTMENT OF CHEMISTRY Lab report: DETERMINATION OF EMPIRICAL FORMULA Done by: X IB1 November 13, 2008 I. Data Collection and Processing: 1- Data Collection: a) Quantitative Data: Table 1: Masses of material used or produced in the experiment Weighed Material Mass (� 0.001 g) Empty crucible + lid 15.313 Crucible + lid + magnesium before heating 15.336 Crucible + lid + combustion product 15.351 b) Qualitative Data: * At the beginning of the experiment, the magnesium ribbon appeared a silver one-piece thin ribbon. * During the course of heating, the ribbon was transforming gradually into a white/gray product. Moreover, the heating process was attended by ignition of the crucible content and formation of smoke. ...read more.

Middle

= m (MgxOy) - m (Mg) = 0.038 - 0.023 = 0.015 � 0.004 g d. Calculation of the Moles of Oxygen and Magnesium: n (Mg) = m (Mg) � M(Mg) = 0.023 g � 24.31 g.mol-1 = 0.00095 mol (uncertainty to be found in the next question) n (O) = m (O) � M (O) = 0.015 g � 16.00 g.mol-1 = 0.0009 mol (uncertainty to be found in the next question) e. Determination of Uncertainties In Moles: Since the molar mass is a definitional quantity, its uncertainty is zero, thus: ?n (Mg) = 1/24.31 (� 0.002) = � 0.00008 mol ?n (O) = 1/16.00 (� 0.004) ...read more.

Conclusion

2) Evaluating the Procedure: * The Percentage of Purity of Initial Mg: The initial reactant is not 100% pure Mg, otherwise the number of moles of both Mg and O would have been exactly equal, which is not the case. * Side Reactions That Might Have Occurred: * End of the Reaction: After heating the crucible, its lid and the magnesium for almost 10-13 minutes, I noticed that gray powder was no longer forming so I decided that the reaction was over. 3) Improving the Investigation: * The Bunsen Burner was not well functioning so it took us a lot of time to get to the perfect flame. * When the magnesium began to bum, we didn't remove the burner; we kept it until the end of the experiment which we shouldn't have done. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

## Found what you're looking for?

• Start learning 29% faster today
• 150,000+ documents available
• Just £6.99 a month

Not the one? Search for your essay title...
• Join over 1.2 million students every month
• Accelerate your learning by 29%
• Unlimited access from just £6.99 per month

# Related International Baccalaureate Chemistry essays

1. ## Experiment - The Empirical Formula of Magnesium Oxide

of magnesium and magnesium oxide, i.e., the absolute uncertainty of oxygen = � (0.002 + 0.002) = � 0.004g No. of moles of magnesium, oxygen The formula was employed, MM (Mg) = 24.31g/mol, MM (O) =16.00g/mol, the masses has already been calculated above.

2. ## Enthalpy of Combustion Lab Report

Dependant Variables: In the conducted experimental procedure, the temperature of the measured mass of water in the calorimeter is the dependent variable. As the amount of ethanol used in the experimental procedure differs, the temperature of the mass of water will also change depending on the amount of ethanol used.

1. ## An Experiment to Determine the Empirical Formula of Lead Iodide

= 2.9 % Ratio of lead to iodine= 1:1.5 � 2.9 % Similar calculations have been carried out for run 2 and 3. Table 2: Final Result of Empirical Formula calculations Runs Mass of iodine / g �0.003 g Moles of iodine x 10-3 Mass of lead / g �0.001

2. ## Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

+ 0.0001= 0.2240g (The mass of magnesium ribbon = The mass of the crucible, lid and magnesium- mass of the crucible and lid) 2.Mass of oxygen that combine with Mg ( in grams) +0.0001= 0.1133g (Mass of oxygen = mass of magnesium oxide, crucible, lid - mass of magnesium, crucible, lid)

1. ## Indicator Lab Report - investigating acid-base reactions

Since methyl orange has a range of 3.2 to 4.4, it seemed the most appropriate indicator. Observations * Each time a drop of base was added to the strong acid + strong base and weak acid + strong experiments, there was a hint of purple which would disappear after swirling.

2. ## Enthalpy of Combustion of Alcohols Lab

+ (3 x 1) + (16) + (1) M = 32.0 gmol-1 m = 1.53 g n = 1.53g/32.0 gmol-1 n = 0.0480 mol Step 2: Calculating heat energy given out Q = mC?T m = 100g C = 4.186 Jg-1k-1 ?T = 11.5k Q = (100g)

1. ## To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

1 × safety goggles Safety goggles are required because splashes of concentrated 2M HCl can lead to serious eye injuries or even blindness. 1 × rubber gloves Rubber gloves are required to prevent any damage to hands by the corrosive HCl.

2. ## Finding the empirical formula of magnesium oxide

22.60-22.43=0.17 22.62-22.45=0.17 Number of moles, oxygen/ mol = 0.0123 = 0.0123 Empirical formula of Magnesium oxide Mg : O 0.0123: 0.0106 1.1604: 1.000 Nearest whole number 1 : 1 MgO Mg : O 0.0123: 0.0106 1.1604: 1.000 Nearest whole number 1 : 1 MgO Aspect Experiment 1 Experiment 2 Experimental • Over 160,000 pieces
of student written work
• Annotated by
experienced teachers
• Ideas and feedback to 