• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determination of the amount of water present in copper sulfate hydrate

Extracts from this document...

Introduction

Aim: The Aim of this experment is to determine the amount of water present in a sample of copper sulfate. The amount of water present that obtained from this experment is used to predict the formula the hydrated copper sulfate. Raw data: Quantitative data: Measurements Mass (gram) First Second Third Mass of the test tube 19.0 19.0 19.0 Mass of the test tube + hydrated salt 19.6 19.8 20.1 Mass of the test tube + anhydrated salt 19.4 19.6 19.1 Qualitative data: * The colour has change from light blue to light grey. * The test tube went darker. * There was water which evaporate from the sample of copper sulfate. ...read more.

Middle

= 0.6 - 0.4 = 0.2 g Mole of CuSO4 = mass of CuSO4 / molar mass of CuSO4 = 0.4 g / 159.61 g/mol = 0.0025 mol Mole of H2O = mass of H2O / molar mass of H2O = 0.2 g / 18.01 g/mol = 0.0111 mol Mole ratio = mole CuSO4: mole H2O = 0.0025 : 0.0111 = 1 : 4 Therefor the value of x is 4 and the formula of copper sulfate hydrate is CuSO4. 4H2O Concluison: Copper to sulfate usually found on hydrate form, because it absorbs water easliy. The copper sulfate and water absorbed forming a weak bond, so the water could be released easily when this compound is heated. ...read more.

Conclusion

"Copper(II) Sulfate." Wikipedia, the Free Encyclopedia. 8 Sept. 2011. Web. 12 Sept. 2011. <http://en.wikipedia.org/wiki/Copper(II)_sulfate>. Evaluation: The method in this experiment can be used to determine the amount of water present in a sample that forming weak bond with a number of water molecules. The data obtain from the experiment could be different because the sample is highly hygroscopisch. The determination process that use this method should be repeated to get more accurate data. The data from the third measurement is far different rather then the data obtained from the first and second one it could be happend because of the uncertainty that mention above. The heating process is could be not constant because we use the bunsen burner that its temperature can not be control. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Lab 1 - Determining Hydrate Formulas

    heated (because this is the maximum times I could have heated it because of our teacher's orders), mass of the crucible with the lid, and the mass of the dehydrated Zinc(II) Sulfate (ZnSO4) salt. These 4 variables helped me to determine the formula of the Zinc (II)

  2. How much amount of copper sulfate is formed after heating hydrated copper sulfate?

    Data collection and processing The mass of empty crucible= 50.12g (�0.01g) The mass of crucible with hydrated copper sulfate= 51.82g (�0.01g) The mass of hydrated copper sulfate= 51.82g-50.12g= 1.70g (�0.01g) The mass of crucible after heating= 50.92g The mass of copper sulfate= 51.82g-50.92g= 0.90g (�0.01g)

  1. Percentage of Water In Popcorn

    This would have added to the mass and lowered the percentage of water. To improve this lab, only one lab balance should be used during the entire experiment. Also, more care should be exercised when popping popcorn so that the popcorn does not burn.

  2. Lab #2 Water Hydration of Copper(II) Sulfate. Purpose- To determine the formula of ...

    4.6 H2O Class data for Cu(II)SO4 + X H2O 1) 4.61 2) 4.72 3) 4.77 4) 5.25 5) 5.30 6) 5.14 7) 6.20 Conclusions- We demonstrated that by heating five grams of copper(II) sulfate to drive off all the water we were left with 3.35 grams of Cu(II)SO4 and 1.75 grams of water.

  1. Group 4

    weight at a given temperature, known as the Maxwell-Boltzmann distribution (Graph 3). This distribution was first predicted using the kinetic theory of gases, and was then verified experimentally using a time-of-flight spectrometer. As shown by the Maxwell-Boltzmann distributions in Graph 3, there are very few molecules traveling at very low or at very high speeds.

  2. Electrolysis of copper sulphate

    Mass of Cu gained in each trial barely increased over changing the current from 0.4 to 1.2 amps and remained somewhat constant at 0.008 grams as the current was increased, opposed to the theoretical results, which showed a constant increase in mass as current increased.

  1. PURPOSE To determine the amount of water of crystallization in one mole of a ...

    Repeated with 2 more samples. DATA COLLECTION AND PROCESSING:+ Data/Observations Name of Salt Copper (II)

  2. The chemistry of atmospheric and water pollution.

    Gradually the uses for CFCs grew and there were large amounts of CFCs emitted into the atmosphere due to their extensive use. Some of its uses and hence origins were: Refrigerants in air conditioners and refrigerators Solvents in dry-cleaning Propellants in aerosol spray cans (deodorants, insecticides)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work