• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Determination of the relative molecular mass of sodium carbonate by titration.

Extracts from this document...


Title : Determination of the relative molecular mass of sodium carbonate Data collection: (A) Qualitative o Colour of methyl orange changes from reddish pink to orange (B) Quantitative o Tare weight of sodium carbonate: 2.5061g � 0.0001g o Volume of sodium carbonate in volumetric flask: 250.00cm� �0.15cm� o Volume of sodium carbonate in pipette: 25.00cm� � 0.25cm� o Volume of 0.09677M hydrochloric acid used: Burette reading (cm�) Titration 1 Titration 2 Titration 3 Initial reading � 0.05cm� 0.00 0.00 0.00 Final reading � 0.05cm� 27.50 27.30 27.70 Volume of HCL used � 0.10cm� 27.50 27.30 27.70 Average reading for volume of 0.09677M hydrochloric acid used 27.50 + 27.30 + 27.70 = 27.50cm� � 0.10cm� 3 Data processing: Subject Calculation % uncertainties Tare weight of sodium carbonate 0.0001 g x 100% 2.5061 g ...read more.


x 0.09677 M 1000 = 0.002661mole � 0.3636% Based on the equation, one mole of H2NSO3H reacted with one mole of HCL. Therefore, 0.00261mole of HCL reacted completely with 0.00261mole of H2NSO3H. However, 0.00261 � 0.3636% mole of HCL reacted with only 25.00cm� � 1.00% of sodium carbonate. Therefore, the exact mole for sodium carbonate made in 250.00cm� � 0.060 % solution is 0.00261mole � 0.3636% x 10 = 0.0261mole � . (0.3636%+0.060% = 0.4236%) Hence, to find the relative molecular mass: Mole = Mass RMM 0.02661mole � 0.4236% = 2.5061g � 0.004% RMM Therefore, the relative molecular mass for amidosulphuric is 94.18 � 0.4276%. Percentage error = |Experiment value - theoretical value| x 100% Theoretical value = |94.18-97.1| x 100% 97.1 = 3.007% Conclusion: The relative molecular mass for sodium carbonate is 94.18. ...read more.


Theoretically, the colour of methyl orange will change from reddish pink to orange, but when the colour does change to orange, there will be different perception of what is actually orange. Some will consider certain colour is orange while some will not. Therefore, in order to overcome this problem, a controlled conical flask containing methyl orange which colour is orange should be put in front so that the students would know what exactly orange meant. Secondly, when the sodium carbonate is transfer from its container to the beaker to be saluted, some of the particles are not transferred. Instead, they remained in the container. Consequently, the molarities of sodium carbonate are not accurate. Therefore to overcome this error, the container should be wash with distilled water right after the acid is transferred into the beaker. The washing then, too, is transferred to the beaker. : ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Calcium Carbonate and Hydrochloric Acid

    The 0,0149g reading (on the graph) could have been recorded a second or two too late and the 0,0828g reading a second or two too early. Another explanation for the anomalies, where the loss of weight over time was smaller than expected (lower than the trend line)

  2. The purpose of this experiment is to find the composition of a sample of ...

    The final reading of burette is recorded 15. The steps from 5 to 14 should be repeated 3 times 16. The burette and the tip is washed after the experiment. Results and calculation Table 1 (Preparation of the Standard solution)

  1. alkali titration

    / 0.0125�2.15% MM = 120 �(1.33+2.15)% MM = 120 �3.48% m = n x MM m = 1 x 120�3.48% ? mass of one mole of oxalic acid = 120g �3.48% 6. How many molecules of water of crystallisation are present in one mole?

  2. im To determine the relative molecular mass of chloroacetic acid ClCH2COOH

    Number of moles of chloracetic acid in 100 cm3 chloroacetic acid solution 2.1* 10-3 moles of ClCH2COOH � 10.00 cm3 of ClCH2COOH x � 100.00 cm3 of ClCH2COOH Number of moles of ClCH2COOH in 100.00 cm3 solution = x = 2.1*10-3 * 100.00 = 2.1 * 10-2 mol 10.00 4.

  1. To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

    1x digital balance (±0.01g) To weigh out samples of substance Z. 1x metal spoon To efficiently scoop out small masses of substance Z. 1x 50cm3 beaker To hold the initial mass of substance Z Quantity × Chemicals Purpose Methyl Orange Indicator To indicate the end-point of the acid-base reaction.

  2. Lab Report Determining The Relative Molecular Mass of Amidosulphuric Acid

    with 1 mole of amidosulphuric acid.So, we can say that 0.0024 ± 0.4% mole of sodium hydroxide reacted with 0.0024± 0.4% mole of amidosulphuric acid in this reaction based on the ratio of mole in equation.

  1. Experiment to find the relative atomic mass of lithium

    This is because of a slow reaction time and the fact that the bung didn?t fit through the opening of the flask at the exact moment. A less amount of hydrogen gas was collected therefore decreasing the number of hydrogen molecules and therefore a less number of lithium molecules which

  2. Determining the relative atomic mass of Lithium

    4.3% Conclusion Theoretical or Accepted Result 6.9 Experimental or Actual Result 7.2 Percentage Error 1.39% Calculated random error % The percentage error of 1.39% is smaller than the calculated random error of 9.72%.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work