• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

determining the empirical of magnesium oxide

Extracts from this document...


MAGNESIUM OXIDE-EMPIRICAL FORMULA CHEMISTRY HL JAIME CASTRO A. 10-2 PRESENTED TO: KEITH RIGBY ANGLO COLOMBIAN SCHOOL EXPERIMENTAL SCIENCES DEPARTMENT RESULTS: The following table shows the mass recorded for the crucible, the magnesium and the magnesium oxide. Table1. Showing the masses recorded during the practical Crucible /g �0.01g Crucible and magnesium /g �0.01 g Crucible and magnesium oxide /g �0.01g 25.50 25.67 25.80 If we subtract the mass of the crucible from the masses recorded in table 1 we can get the values of the masses of the magnesium and the magnesium oxide, the next table shows the exact masses of both magnesium and magnesium oxide. Table2. Showing the mass of Magnesium and the mass of magnesium oxide Magnesium /g �0.01 g Magnesium oxide /g �0.01g 0.17 0.30 ANALYSIS OF RESULTS: Taking in count the data recorded in table 2 we can calculate the mass of the oxygen from the air that reacted with the ...read more.


(i)Magnesium (ii)Oxygen From the process developed above we can say that the ratio there is between magnesium atoms and oxygen atoms in magnesium oxide is of 1:1, and therefore the empirical formula is MgO, which means there is one oxygen atom for every magnesium atom. Now to evaluate how reliable our results are we must calculate the percentage error of the practical and the total percentage of uncertainty. Percentage error This percentage is calculated by adding up the percentage error of the ratio between magnesium and oxygen. a) (for magnesium) b) (for magnesium) The total percentage error of this practical was of 15% Total percentage uncertainty This percentage is calculated by the addition of the percentage uncertainty of the masses of magnesium and of oxygen. Percentage uncertainty of the mass of Magnesium Uncertainty: �0.01g Mass of magnesium: 0.17g Percentage uncertainty = 5.9% Percentage uncertainty = 5.9% Percentage uncertainty of the mass of Oxygen Uncertainty: �0.01g ...read more.


The presence of the previously mentioned random errors can be easily explained by understanding the method used to develop the practical, since the oxygen was allowed to go into the crucible by taking the lid off, so when this occurred some of the newly formed magnesium oxide escaped out of the crucible and therefore some of it wasn't registered in the mass of magnesium oxide. To avoid the presence of the random errors I can suggest to improvements for this practical, first of all the use of better or more specialized equipment that allows us to have a more controlled way of introducing oxygen into the crucible where the magnesium is being heated. And secondly I suggest repeating the practical at least 2 times in order to calculate an average of the results so the possibility of random errors is reduced to its minimum. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Experiment - The Empirical Formula of Magnesium Oxide

    They were later converted into absolute uncertainties. A scatter graph was drawn to show the compositions of magnesium and oxygen within magnesium oxide. The percentage yield of magnesium oxide was also found. Sample Calculation Mass of magnesium, magnesium oxide, oxygen The known: m(Crucible+lid)= 32.144g, m(Crucible+lid+Mg)= 32.230g, m(Crucible+lid+MgO)= 32.287g m(Mg)= m(Crucible+lid+Mg)-

  2. Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

    of Magnesium Oxide found for this trial is therefore Mg6O5 Trail 2: Observations: (Observations are made by lifting the lid after every 2 minutes) 1. Nothing. 2. Nothing but crucible glows red at the bottom. 3. White smoke . 4.

  1. Finding the empirical formula of magnesium oxide

    Magnesium ribbon, Mg 2. Electronic Balance (± 0.01g) 3. tripod stand 4. Bunsen burner 5. clay triangle 6. Crucible and lid 7. Tongs 8. deionised water 9. wire gauze 10. sand paper PROCEDURE 1. An empty crucible and lid were rinsed thoroughly with deionised water 2.

  2. Finding thr Percentage Composition of Magnesium Oxide

    The white ash was crushed with a stirring rod (amendment: because the procedure for Part B was missing; the white ash was not crushed). Enough distilled water to cover the contents was added to the crucible. It was heated once again for about two minutes in order to evaporate the

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    The lid of the calorimeter was closed as quickly as possible to ensure that heat loss through convection currents was minimized. 6. Using the thermometer, the mixture was very gently stirred for a few seconds. 7. Every five seconds, the reading on the thermometer was read as accurately as possible and noted.

  2. Chemistry Investigation to find the Empirical Formula of Magnesium Oxide

    Nevertheless, when displayed in Table 6 the average ratio was 1 : 1 matching the theoretical of 1 : 1 which supports the hypothesis. Evaluation of Data In Graph 1, it was noticed that there were many random errors with the experiment.

  1. Discovering the formula of MgO

    5,80 4 0,076 10,864 10,984 0,120 0,044 36,6 8,32 Mass of Product= (Mass of crucible with product)-(Mass of crucible) Uncertainty in mass of product= (Uncertainty in mass of crucible with product) + (Uncertainty in mass of crucible) =0,001+0,001=±0,002 Mass of Oxygen== (Mass of product)-(Mass of magnesium)

  2. The purpose of this lab was to calculate the heat of formation for magnesium ...

    Calculate the molar heat of formation of Mg in kJ/mol. Use Molar heat = Q (in kJ) / mol of wax. Remember to convert to kJ Solution: âHMg = âHMg = âHMg = -429.841kJ/mol± 8.61% Table 4: Final Uncertainty Calculations for Trial 1 Uncertainty Calculations Percent Uncertainty Absolute Uncertainty Total uncertainty of Q 8.54% Moles of magnesium(Mg)

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work