• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Discoveirng Hess's Law

Extracts from this document...


Cody Keller Period 2 Examining Hess's Law Introduction Hess's law is named after Germain Hess, a Swiss born Russian Scientist. Hess's law is a law of physical chemistry used in predicting the enthalpy change and conservation of energy of chemical reactions. In particular, this law state that the total energy change for a chemical reaction is not dependant on the route the reaction takes place, assuming the initial and final conditions are the same. Research Question How do we find the enthalpy of the reactions NaOH + HCL � H2O + NaCl, KOH + HCL � H2O + KCl, and NH4Cl + Ba(OH)2 � NH3 + BaCl2? Hypothesis Part 1 If we have 51.1 grams of NaOH mixed with 48.9 grams of HCl, then their reaction should produce -55.7 KJ/mol in an exothermic reaction, according to our theoretical math. Part 2 If we have 7.1 grams of diluted HCl and 11.7 grams of diluted KOH, then the reaction created should produce -56.7 KJ/mol in an exothermic reaction, according to our theoretical math. Part 3 If we have 1.5 grams of both NH4Cl and Ba(OH)2 , then the occurring reaction should produce 91.32 KJ/mol in an endothermic reaction, according to our theoretical math. Variables Part 1 Independent o The independent variables were the amounts of reactant used (51.1 grams of NaOH and 48.9 grams of HCl), and their molarity, because although they were predetermined, they were determined by us, not given to us. ...read more.


First we got all the necessary equipment and tools to perform the lab. 2. We then took the masses of the 50mL beakers. 3. Then, after solving for the amounts needed of the reactants, we acquired the amount of reactants needed. 4. We then placed each reactant (HCl and KOH) into the separate 50mL beakers and their masses were then subtracted by the original mass of the 50mL beakers to find the masses of the reactants. 5. Both were diluted with 5mL of water while being stirred with a stirring rod. 6. We then placed both of the solutions into a single, 100mL beaker and we recorded the changes in the temperature. 7. After all this had transpired, we recorded our data and solved for ?H. Part 3 1. First we got all the necessary equipment and tools to perform the lab. 2. We then made sure that we had our safety goggles, gloves, and a fume hood to let out the ammonium gas, due to the harmfulness associated with these chemicals. 3. Before any lab reactions were done, we solved for the correct amount of reactants (1.5 grams of both NH4Cl and Ba(OH)2) and placed them in separate 50mL beakers. 4. We then took their masses and subtracted the original 50mL beaker weight to find the masses of the reactants. 5. Then, we put both of the reactants in the mortar and we began to mash the substance with the pestle while recording the temperature and observations. ...read more.


While none of our actual ?H values matched up exactly with the theoretical ?H values, all of the values successfully and accurately portrayed whether the reactions were endothermic or exothermic, which is principally what the lab is about, and none of our actual ?H values were astronomically off, or at least not off enough to make a significant difference. Furthermore, we were able to calculate the ?H's with a moderate amount of accuracy. This lack of exact accuracy indicates several errors in this lab. Firstly, human error is a gigantic factor. With so many calculations, sign changes, eyeball measuring, and other human inaccuracies undetected and therefore unaccounted for indefinitely contribute to the lack of accuracy. Also, inaccurate measuring tools and devices may have played a role. Finally, a lack of understanding of what was actually transpiring would have been tremendously helpful. When you don't fully understand the concepts being employed, you are going completely on "empty" formulas without an understanding of what you are actually doing, making it virtually impossible to detect error. If this lab were to be conducted again, there would be several different things I would do different. I would alter my methods of conducting this lab to minimize human error. Also, I would use more accurate measuring tools and devices. Finally, I would make my best effort to come into the lab with as much prior knowledge about the subject as possible, and also bring to the table a superb grasp of what was actually going on. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB chemistry revision notes

    o Conductivity of a strong acid is higher because it has more ions. * Strong and Weak bases o A strong base is one which fully dissociates (ionizes) in aqueous solution. E.g. . o A weak base is one which only partially dissociates in aqueous solution. E.g. , ethylamine, amines.

  2. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    �change in temperature= 22 kJ/mol Q (energy)= m(mass of HCl solution)* c(specific heat capacity of water) *?T (temperature change) Q = 0.05kg x 4200 J/kg�C(from data booklet) x 17 �C = 4620 J = 4.62 kJ I will carry out the following calculations to find the limiting reactant The ratio

  1. Group 4

    Larger atoms in the alloy apply a compressional stress on neighbouring atoms, and smaller atoms apply a tensional stress on their neighbours. This particular composition of alloys helps to resist deformation when a strong force is applied on it. Even when the amounts of each element in an alloy are

  2. Enthalpy and Hess law

    Then using a measuring cylinder 50 ml of 2M of HCl was measured and poured into a can. A thermometer was used to record the temperature of the hydrochloric acid in the can. Afterwards NaOH was added into the can.

  1. Validating Hess's law

    Stir and record the maximum temperature reached. Calculate the enthalpy change of this process in kJmol-1. Measurement of ?H?3 Pour 50cm3 of 1M sodium hydroxide into an empty polystyrene cup and record its temperature as accurately as you possibly can.

  2. Chemistry Internal Assessment Hesss Law

    Thus undistilled water would have a different specific heat capacity due to the presence of different molecules. This would have had an unknown effect on the enthalpy change as we are unsure whether the specific heat capacity for a undistilled water is smaller or greater than the specific heat capacity for distilled water.

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    This particular thermometer was the most precise thermometer available and had a wide range of -10oC to 110oC. Secondly, it was as easy to use as any other conventional thermometer. 1 × electronic balance (±0.01g) To measure the 3cm strip of Magnesium and to measure out 0.05g of MgO.

  2. Chemistry thermo lab, Hess's Law.

    3. Now for mass: 1. 2. As for the energy gained: 1. 2. Now for the energy of the reaction: 1. It is multiplied by an integer (-1) so it is the same unc. As for the moles: 1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work