Effect of Concentration on Electrochemical Cell Potential Using Nernst Equation

Authors Avatar

Mr. Idris

IB Chemistry

14th October 2012

Effect of Concentration on Cell Potential Using Nernst Equation

Introduction:

Galvanic or voltaic cells convert chemical energy generated from the electron transfer in redox equations to electrical energy. The cell is composed of two half-cells. Each half cell has a metal electrode (the anode and cathode) and a solution of a salt of the same metal. In the anode the metal oxidizes and produces cations, while the cathode the cations in the solution are reduced and collect at the electrode. The circuit is connected with wires attached to each electrode so that there is a flow of electrons from the anode to the cathode. The half cells are connected with a salt bridge, usually potassium nitrate to allow the flow of anions from the cathode into the anode to balance the flow of electrons. Cell potentials (measure of the energy per unit which is available from the redox reactions) of the electrodes can be measured using the voltmeter. A standard electrode cell potential can be determined using galvanic cells under standard conditions which include 1 mol for each solution. The Nernst’s equation is used to calculate the voltage of an electrochemical cell or to find the concentration of one of the components of the cell. The Nernst equation can be applied to find the cell potential of electrodes in any concentration by relating the cell potentials to its standard cell potential.

Join now!

Nernst Equation

Ecell = E0cell - (RT/nF)lnQ

Ecell = cell potential under nonstandard conditions (V)
E
0cell = cell potential under standard conditions
R = gas constant, which is 8.31 (volt-coulomb)/(mol-K)
T = temperature (K)
n = number of moles of electrons exchanged in the electrochemical reaction (mol)
F = Faraday's constant, 96500 coulombs/mol
Q = reaction quotient, which is the equilibrium expression with initial concentrations rather than equilibrium concentrations

Purpose: To determine the effect of concentration on cell potential using the Nrest equation.

Hypothesis: An equal concentration of the solutions will result a cell potential equal to the standard because the logarithm of the reaction quotient ...

This is a preview of the whole essay