• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Electrochemical cell lab Aim :- To find out the feasibility of a redox reaction by looking at the cell potential of the reaction .

Extracts from this document...


Electrochemical cell lab Aim :- To find out the feasibility of a redox reaction by looking at the cell potential of the reaction . Quantitative observation The table below shows the values of cell potential that were recorded when the experiment was performed Reaction Cell potential (±0.01V) CuSO4 and ZnSO4 0.99V CuSO4 and AgNO3 0.64V Ag 1.39V Qualitative Observation Reaction Obsevrations CuSO4 and ZnSO4 Copper sulphate turns from clear to blue , whereas zinc sulphate remains colorless CuSO4 and AgNO3 Copper sulphate is blue in color , silver nitrate is colorless Ag Data processing Experiment 1 Zn(s) ...read more.


+ e- (aq)-> Ag(s) Zn(s) + 2Ag+ (aq) -> Zn2+ (aq) + 2Ag (s) The table below shows the literature values for the respective cell potential Reaction Cell potential (±0.01V) CuSO4 and ZnSO4 0.34V CuSO4 and AgNO3 0.46 V. Ag 1.10 V Error percentage = (|difference between the literature and experimental value|)/(the literature value )x100 = (|0.34V - 0.99V|)/(0.34V) x100 = 191.17% We can similarly find the error percentages for other cell potentials also The table below shows the respective error percentages of each of the cell potential Reaction Error percentage CuSO4 and ZnSO4 191.17% CuSO4 and AgNO3 39.13% Ag 16.36% Theory Electrochemical cells In an electrochemical cell, electricity is produced through chemical reactions. ...read more.


During oxidation the metal releases the electrons to form ions. The electrons then travel to the other cell, through an external wire connected in series to a bulb to the positive terminal. At the positive terminal the electrons reduce with the metal ion on the positive terminal to form the respective metal. Since reduction takes place at this electrode, this electrode is referred to as cathode. The direction of the conventional flow of the current flows from cathode to anode since the electrons from the metal that is oxidized in the anode moves to cathode. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Design Lab-Voltaic Cell

    - Switching the electrodes would create a new variable to test. Equipment: * 2 150 mL Beakers * 1 glass salt bridge * Multiple cotton balls (depends on user and size of cotton balls available) * Copper (II) Solution * Zinc (II)

  2. Investigating the effect of ion concentration in electrolytes on the potential difference in a ...

    0.578 0.04 0.919 0.374 0.602 *Note: the exact uncertainty of the concentration is unknown, but it is assumed to be � 0.01 Processed Data Table 2: Percentage change of voltage under different electrolyte concentrations/ %�0.01 Electrodes combinations Concentration/ mol dm-3 � 0.01 Zinc

  1. Change of Potential Difference in Voltaic Cells Lab Report

    Methods Materials & Apparatus * Two 100 mL Glass Beakers * Filter papers * Glass rod * Two disposable gloves * Two Insulated connecting wires * Graduated cylinder (50 ml) �0.5 * Different concentrations of Copper (II) Sulfate solution (CuSO4): 0.2 M, 0.4 M, 0.6 M, 0.8 M and 1.0 M.

  2. Electrochemical Cell

    + 2e- Independent Variable: Temperature of the electrolytes (�C) Dependant Variable: Voltage (V) Controlled Variables: > Nature of electrodes: The electrodes will be of the same elements i.e. Copper and Zinc. Changing the nature of the electrodes will change the voltage since different elements produce different forms of ions which then affects the voltage of the cell.

  1. Rate of Reaction

    The magnesium powder should be as pure as possible. It should be stored in a clean and dry environment to ensure that no impurities (such as effects of oxidation) prevent the collection of accurate data. 2) Eye protection is necessary due to the use of hydrochloric acid - tiny bubbles may cause irritation of eyes.

  2. How duration affects the rate of electrolysis in a Voltaic Cell

    Repeat steps 5 to 6 9) Repeat the same steps until we get mass readings for up to 60 minutes of experimenting. Data Collection and Processing Raw data:- - Initial mass of anode (zinc electrode): 31.29 �0.01g - Initial mass of cathode (copper electrode): 32.05 �0.01g Table 1 - Mass

  1. Effect of Current on The Quantity of Products in Copper Purification Through Electrolysis

    2,50 1,5100 1,5650 0,055 13 2,50 1,5500 1,6250 0,075 14 2,50 1,5650 1,6500 0,085 15 2,50 1,5050 1,5550 0,050 16 3,50 1,5950 1,6600 0,065 0,064 17 3,50 1,5500 1,6200 0,070 18 3,50 1,4950 1,5600 0,065 19 3,50 1,5500 1,6200 0,070 20 3,50 1,6300 1,6800 0,050 21 4,50 1,6050 1,6780 0,073

  2. Electrolysis of copper sulphate

    Sixth current reading is 1.2 amps. Total Quantity of charge = Current Ax TimeS â 1.2 x 120 =144 Coulombs 1. To find number of electrons transferred. Number of e- =Total Quantity of ChargeCharge of 1e- â1441.60217733x10-19= 9 x1020electrons 1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work