• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Empirical Formula of Magnesium Oxide

Extracts from this document...


Empirical Formula of Magnesium Oxide Name: Suleman Esam Date: 16/10-07 Purpose: The purpose of this lab was to experimentally determine the empirical formula of magnesium oxide. Background: Metal oxide is formed when a metal reacts with oxygen. Magnesium is an alkaline earth metal. When magnesium is heated, it reacts vigorously in the preset of oxygen. It is easy to ignite it when it is shred or powdered, but difficult when it is bulk. Once the metal is ignited, it is hard to extinguish it. Equipments: - Magnesium ribbon - Crucible & lid - Bunsen burner - Steel wool - Pipe clay triangle - Tripod - Crucible tongs - Balance - Goggles Procedure: 1. We took on our goggles and stated the experiment. 2. First we placed a tripod over a Bunsen burner. On the tripod, we placed a pipe clay triangle and over it the crucible & lid. 3. ...read more.


7. Finally, when the magnesium that finished reacting, we let it cool. When it had cooled, we recorded the mass of crucible with magnesium oxide and its lid. COMBINED MASS OF THE OBJECTS AFTER = 33.450g �0.002g Result Now I have every mass that I need to find the empirical formula for magnesium oxide, except the mass of oxygen. By subtracting the mass that the object before the reaction from what it had after magnesium was burned, we find the mass of oxygen. COMBINED MASS OF THE OBJECTS BEFORE - COMBINED MASS OF THE OBJECTS AFTER = MASS OF OXYGEN (33.450g - 33.279g) � (0.002g + 0.002g) = 0.171g �0.004g A summary of all the mass is listed in the chart below. OBJECT MASS (g) UNCERTAINTY (g) Objects before 33.279 �0.002 Objects after 33.450 �0.002 Mg 0.324 �0.002 Oxygen 0.171 �0.004 Magnesium oxide 0.495 �0.006 By finding the amount of moles of these two atoms, we can determine the empirical formula for magnesium oxide. ...read more.


Errors The mole of magnesium and oxygen was not the same. I found out that the mass of oxygen was smaller then it was supposed to be. This error can have occurred by three things: 1. We did not found out the empirical formula for magnesium oxide properly; because magnesium also reacted with nitrogen. It takes three magnesium atoms, while it takes only two nitrogen atoms to form a compound. Nitrogen is also lighter then oxygen; thus our combined mass after the reaction became smaller then if the magnesium had totally reacted with oxygen. 2. When we lifted the lit while magnesium ribbon was reacting, we let out smoke. That was magnesium oxide in vapour. 3. There is a possibility that maybe not all of the magnesium reacted. Improvements: If we had carried the experiment a little more, we could have removed the magnesium nitride. By adding some drops of water and then heating it up, we will get this formula: Mg3N2 + 6H2O � 3Mg(OH)2 + 2NH3 The result will be ammonia gas, which will depart when heated. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Analysis of the Nitrogen Content of Lawn Fertiliser

    + OH-(aq) --> NH3(g) + H2O(l) The basic solution needed for titration was reached through heating the solution to remove the ammonium ions. By heating it, the rate of reaction between the ammonium ions and hydroxide ions increases, consequently producing water and ammonia. Since ammonia is an extremely volatile gas, boiling the solution will result the vaporization rate, which is the desired outcome.

  2. Experiment - The Empirical Formula of Magnesium Oxide

    Once cooled, zero the scales and use the tongs to carefully place the crucible and lid on the scales. Record the mass. 10. Repeat steps 1 - 9 (OR collect results from other groups). Experimental Report Data Collection and Processing Photograph of Lab Setup Photo 1: Laboratory Setup 1.

  1. A comparison of various proprieary antacids

    Trial Number 1 2 3 Final Volume of NaOH, cm3 �0.05 cm3 26.70 23.70 23.50 Initial Volume of NaOH, cm3 �0.05 cm3 0.00 0.00 0.00 Volume of NaOH �0.1 cm3 26.70 23.70 23.50 Closest Results Colour change of mixture in conical flask Cream--> Pinkish White Volume of HCl(aq)

  2. Empirical Formula of Magnesium Oxide

    Continue heating until the crucible contains only white powder 8. When you no longer have any magnesium ribbon, turn off the burner and allow the crucible, lid and contents to cool 9. Measure the mass of the crucible, lid and contents.

  1. Chemistry Investigation to find the Empirical Formula of Magnesium Oxide

    Calculations Formulae Sample Formulae Sample Result Finding the mass of Mg Finding the mass of O Mg Mass of MgO Moles of Mg 3.414x 10-3 Finding moles of O 1.938x10-3 Average (do this last) 37.238 + 38.038 + 34.256 + 33.613 + 33.971 + 39.322 + 32.844/7 = 35.6117g Percentage

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    1 × electronic stopwatch (0.01s) To be used for keeping a track of time elapsed while performing the experiment because every five seconds, a thermometer reading had to be taken. The electronic stopwatch was the best choice since it was precise and the buttons on the stopwatch were easy to press and placed in strategic

  1. Discovering the formula of MgO

    Processed data: Raw Data Processed data Serial No. Mass of Magnesium(g)±0,001g Mass of crucible without lid(g)±0,001g Mass of crucible with product(g)±0,001g Mass of product(g)±0,002g Mass of oxygen(g)±0,003g Percentage composition of oxygen (%) Percentage error (%) 1 0,058 10,864 10,954 0,090 0,032 35,5 11,1 2 0,101 10,864 11,027 0,163 0,062 38,1 4,90 3 0,086 10,864 11,002 0,138 0,052 37,6

  2. The purpose of this lab was to calculate the heat of formation for magnesium ...

    Solution: âTHCl = âTHClfinal -âTHClinital âTH20 = 33.5°C -21.9°C âTH20 = 11.6°C 1. Calculate the Quantity of Heat absorbed by the water in the can, Assume that the specific heat of HCl is 4.18J/g°C the same as water and use the formula of Q=mc âT 2.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work