• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Enthalpy and Hess law

Extracts from this document...

Introduction

Enthalpy change and Hess's law. Introduction: Enthalpy is the total energy of a system, some of which is restored as chemical potential energy in the chemical bonds. During reactions, bonds are broken and formed. As a result, all reactions are accompanied by a change in the potential energy of the bonds, and hence an enthalpy change. This enthalpy change of reaction can be measured and is given the symbol H. The temperature of a system is a measure of the average kinetic energy of the particles present. Therefore, during a reaction, as bonds are broken and formed, there is a change in this average kinetic energy and this will result in a change in the temperature of the system. On the other hand, heat is the measure of the total energy of the substance. When the temperature of a substance increases or decreases, heat energy is absorbed or released from the environment. In order to measure this change in temperature, the following formula can be used:- Heat energy = m.C.T ......where, m= mass of the substance C= specific heat capacity T= change in temperature Aim of experiment: - This particular experiment focuses on Hess's law. Hess's law states that the total enthalpy change on converting a given set of reactants to a particular set of products is constant, irrespective of the way in which the change is carried out. ...read more.

Middle

10 � 0.1 39.9 � 1 20 � 0.1 39.8 � 1 30 � 0.1 39.6 � 1 40 � 0.1 39.5 � 1 50 � 0.1 39.4 � 1 60 � 0.1 39.4 � 1 Table 1.2 temperature changes when 50 ml of water was added to 2M of NaCl to form 1M of NaCl. Table 1.1 temperature changes during the reaction of NaOH and 2M of HCl to form 2M of NaCl. Graph 1.1 temperature changes during the reaction of NaOH and 2M of HCl to form 2M of NaCl. Graph 1.2 temperature changes when 50 ml of water was added to 2M of NaCl to form 1M of NaCl. Results for route two. After 50ml of water was added to 4g of NaOH to form 2M of NaOH, it had a temperature of 32.4�0.1�c. On the other hand, 2M of HCl had a temperature of 22.5�0.1 c�. For table 1.3 the beginning temperature of these two reactants is the mean value of their temperature that is 27.4�0.1�c. This was done because there was not enough time to wait until both reactants reach the same temperature. Time in sec Temperature(�c) 10 � 0.1 32.1� 1 20 � 0.1 32.4� 1 30 � 0.1 32.3� 1 40 � 0.1 32.4� 1 50 � 0.1 32.4� 1 Time in sec Temperature(�c) 10 � 0.1 35.8 � 1 20 � 0.1 35.9 � 1 30 � 0.1 35.8 � 1 40 � 0.1 35.8 � 1 50 � ...read more.

Conclusion

Route two: - the change in temperature in forming 2M of NaOH from NaOH was 9.9�c. To do this 50 ml of water was added and the mass of the solution was 50 g. using the formula the change in enthalpy can be calculated as follows:- Heat change= m. c. = = 2.0 KJ Once 2M of NaOH was formed, 50ml of 2M of HCl was added to form 1M of NaCl, which is the final product. The change in temperature was 8.5�c. The mass was 100g and the change in enthalpy was Heat change= m. c. = = 3.5 KJ The sum of the two changes of enthalpy is 5.5 KJ. Conclusion: - The change in enthalpy for the formation of 1M of NaCl using route one was 2.9 KJ. Using route two it was 5.5 KJ. There is a significant difference of 2.6 KJ. This shows that the experiment done did not prove the Hess's law effectively. This may be due to certain factors that will be discussed below. Limitation: - There could be lose of heat to the surrounding environment that can have vital effect on the results of the experiment. Human error and mistake matter in this kind of experiment. Instead of using a simple thermometer appropriate can be used. Improvements:- the use of data pro logger or calorimeter can minimize the human and device error in measuring temperature and can be better than simple thermometer. Using insulator such as Styrofoam cups to prevent heat from escaping to the surrounding. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Electrochemical cells - investigate the effect of the temperature change of the anode electrolyte ...

    - In previous design, was tends to use hot water bath to increse the temperature of electrolyte, but it was hard to stable the temperature or control the temperature. During the experiment, changed its method that used to heat electrolyte by using hot plate.

  2. The Enthalpy of Neutralization

    because this was the only page to have given an answer, though likely invalid, it was more credible than the majority of other sites where I could have drawn information from, which included forums, yahoo answers, blogs, and one-off question sites.

  1. Hess's Law. The experiment conducted was meant to determine the enthalpy of formation of ...

    : % Error = (|accepted value - experimental value|) ������������������������������� x 100% accepted value % Error = (|- 601.6 - (-538.3)|) kJ/mol ����������������������� x 100% - 601.6 kJ/mol % Error = 63.3 kJ/mol ������������� x 100% 601.6 kJ/mol % Error = 10.5 % Conclusion and Evaluation Conclusion The experiment conducted was meant to determine the enthalpy of formation of MgO(s)

  2. Thermodynamics: Enthalpy of Neutralization and Calorimetry

    g 76.028 g Mass of Metal Cylinder 17.715 g 17.771 g 17.751 g Mass of Cold Water 69.133 �.001 g 67.634 �.001 g 68.240 �.001 g 68.336 �.001 g Temperature of Cold Water 21.7 �.5 C� 21.3 �.5 C� 22.0 �.5 C� Temperate of Cylinder 97.1 �.5 C� 95.3 �.5

  1. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    �specific heat capacity of water= 4200 J/kg �C �change in temperature= 7 �C Q (energy)= m(mass of HCl solution)* c(specific heat capacity of water) *?T (temperature change) Q = 0.05kg x 4200 J/kg�C x 7 �C = 1680 J = 1.68 kJ it is necessary to show by calculation, that

  2. hess's law

    room temperature and pressure in the school laboratory and the time interval after which the temperature of the system was measured and noted down i.e. 0.5 minute or 30 seconds. MATERIALS AND METHOD Apparatus Used: > 1 polystyrene cup > Glass rod > Tripod stand > Electronic mass balance >

  1. Lab report. Finding the molar enthalpy change of the reaction between Hydrochloric acid and ...

    the various tests they allowed heat to escape so increasing the heat loss during the experiment. As explained in the previous point although we attempted to take account of the heat loss adding lines to our graphs to determine what the actual peak temperature was this is still not full

  2. The aim of this experiment is to examine the enthalpy of combustion of the ...

    The flame was light orange. Incomplete transmission of heat is assumed due to the movements caused in the laboratory, which affected the flame and therefore the transmission. Qualitative data Mass of butanol Mass 1 Mass 2 Mass 3 Average mass Initial mass g ± 0.01 125.43 147.35 136.14 136.30 Final mass g ± 0.01 124.04

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work