• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Enthalpy of paraffin wax Lab

Extracts from this document...

Introduction

Chemistry Enthalpy of Paraffin Wax lab Aim: Calculate an experimental value for the enthalpy of Combustion of paraffin wax Variables Independent variable: Amount of heat released by the combustion of paraffin wax Dependant variable: Enthalpy of combustion of paraffin wax Controls: The candle used to release energy must be the same throughout the experiment, to ensure that the wax is the same. This will be done by only using one wax candle The aluminium can used to heat up the water must remain the same so that it's mass does not change due to the carbon molecules on the bottom from the heat and so that no water escapes the system. ...read more.

Middle

Measure the temperature of the water in the can and note it down 4. Place the candle below the can (which is suspended above it using a clamp attached to a pole) 5. light the candle 6. Wait around 5 minutes before noting down the temperature of the water 7. blow out the candle and push it aside carefully and swiftly 8. Take the mass of the candle and note it down in your datatable. 9. Weigh the can with the water, take the final mass down and jot down how much water was lost during the procedure 10. Repeat steps 1 to 9 for the second trial Datatable Trial 1 Trial 2 Initial temperature of water (c) ...read more.

Conclusion

Second Experimental Value for enthalpy of combustion (Kj/mol) Theoretical Value for enthalpy of combustion (Kj/mol) -10613.63 -10027.5 -13774 Reasons for difference : Improvements More trials could be done We could time the amount of time the paraffin wax candle burns to give us more even values Water was lost when removing and placing the thermometer, this could be avoided by having the thermometer in the water the whole time, but then the thermometer would absorb the heat as well. Sources of error : Some water and paraffin wax was lost to then environment during the experiment, this can not be changed. Some of the heat was escaping to the atmosphere from the candle, this could not be improved because the candle needs oxygen to burn so we could not place it in an insulated environment. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Enthalpy of Combustion Lab Report

    = 908 - 908 5. (1.31 ? 46.1) = 0.00284 (4.18 ? 6.8 ? 82.3) = 2339 2339 (2339 ? 0.00284) = 823 - 823 Since the combustion of ethanol is an exothermic reaction, the sign of is negative.

  2. Enthalpy of Combustion of Alcohols Lab

    x 100 6.90% Uncertainty for volume of water: (0.05cm3/100cm3) * 100 = 0.05 % Therefore uncertainty for mass of water: 0.05% Uncertainty for change in temperature = (0.02/4.00) x 100 = 0.50% Total Uncertainty = 7.45 % ENTHALPY OF COMBUSTION OF BUTANOL = - 428 kJ/mol � 7.45 % COMPARISON

  1. Heat of Combustion Lab

    Before we heated the water, we made the temperature of water below than 10�C with ice to see the changes of temperature more efficiently.

  2. Change of Potential Difference in Voltaic Cells Lab Report

    To prepare 50 ml of 1.0 M zinc sulfate 14.377 g of ZnSO4.7H2O is needed to be dissolved in 50 ml distilled water. For 5 concentrations of copper sulfate solution, the total volume of 1M of zinc sulfate needed is 250 ml.

  1. Thermodynamics: Enthalpy of Neutralization and Calorimetry

    heat of neutralization with the formula q neutralization cal = (m �?T � s)Solution + (Heat Capacity � ?T)calorimeter Results The data presented below is relevant to Trial 1 of the experiment. These calculations also include uncertainty and the propagation thereof.

  2. The aim of this experiment is to examine the enthalpy of combustion of the ...

    90 59.0 58.0 56.0 58.0 105 69.0 67.0 65.0 67.0 120 72.5 73.0 73.0 73.0 135 75.0 74.0 76.0 75.0 150 74.5 73.5 76.0 75.0 165 74.0 73.0 75.0 74.0 180 72.5 72.5 75.0 73.0 210 72.0 75.5 74.5 74.0 Qualitative data Just a little bit of soot was formed on the boiling tube.The color of flame is light orange.

  1. Analysis of the Standard Enthalpy of Combustion for Alcohols

    Different liquids could result in a difference in the strength of attractive forces between particles, meaning a different specific heat capacity which would affect the calculation of energy gain to water using the equation q=mcâT, and thus an incorrect enthalpy change value.

  2. The chemistry of atmospheric and water pollution.

    FOR THE FORMATION OF OZONE SEE DOT POINT 4.5. Ozone levels have decreased in the stratosphere, especially above Antarctica. In 1985, it was revealed that the concentrations of ozone had decreased 50% since 1975. This ?hole? is continuing to grow. Here is a brief timeline showing yearly changes of ozone concentration: In 1993, reduction in ozone levels was about 25% - 35% depending on the area.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work