• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Evidence of Chemical Reactions Lab

Extracts from this document...

Introduction

Evidence of Chemical Reactions Lab (no design) Malcolm McCulloch Purpose The purpose of this lab is to investigate some of the kinds of evidence that are seen for chemicals changes and reactions. Data Collection (Raw Data) Table 1 Temperature values � 0.5�C Test Reactants Initial Observations Observations at 5mins Observations at 20mins 1 HCl (clear liquid) NaOH (clear liquid) Temp: 23.0�C No visible reaction. Temp: 26.0�C No visible reaction. Temp: 25.0�C No visible reaction. Temp: 24.0�C 2 HCl (clear liquid) CaCO3 (white solid) � CaCO3 sunk to bottom � bubbles on its surface � fizzing noise � still bubbling � still making noise � the liquid looks whitish from so many bubbles � still bubbling � still making noise � bubbles appearing so rapidly that they form a sort of swirling current 3 NaCl (clear liquid) AgNO3 (clear liquid) � AgNO3 turns to consistency of wet tissue paper instantly when drop hits surface � sinks to bottom in such a form � precipitate at bottom � crystal formed floating on the surface of the NaCl � more precipitate at the bottom � crystal has decreased in size (fallen) ...read more.

Middle

- Yes No Yes Yes No � Only measured for Test 1 � Small amounts of gas may not have been noticed Concluding The purpose of this lab is to investigate some of the kinds of evidence that are seen for chemicals changes and reactions. In accordance with the evidence presented above, it can be seen that some of the most common types of evidence are: * Heat - Test 1, for example, had no visible reaction but its temperature instantly rose 3�C as a result of the energy released from the reaction of the acid (HCl) and base (NaOH). * Bubbles - Test 2 bubbled vigorously, showing that a gas was formed as the HCl reacted with the CaCO3. * Noise - the reaction in Test 2 was so intense that it made a fizzing sound. * Precipitate - solid particles (AgCl, Cu(OH)2) are often found floating or sunken in the liquid, a product of the reaction. ...read more.

Conclusion

When considering the purpose, precision and detail are irrelevant. In all reality, this lab was no more complicated than it needed to be, but not too simple either. It actually needs very little in the way of improvement. A few more tests could have been added, such as another one that included a temperature change and another with noise, but also to show types of evidence that were not covered herein, such as the spark and flame that are exhibited by the reactions of alkali metals with water. Improving the Investigation Doing other sorts of measurements - viscosity, mass of precipitate formed relative to amount of reactants, opacity - would allow for greater comparison and presentation, but would not actually be necessary. Using more precise tools and doing more trials would have the same effect, but none of these actually produce more examples of types of reactions, which is the purpose of the lab. This lab could, however, be improved by performing a few more experiments, to include more evidence, such as spark and flame. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. A comparison of various proprieary antacids

    Data Collection: Table 1: Showing the volumes of Sodium hydroxide base(0.5 M) needed to neutralize excess Hydrochloric acid(25 cm3, 0.5 M), after addition of 2 Actal Tums, for three trials. Trial Number 1 2 3 Final Volume of NaOH, cm3 �0.05 cm3 1.45 1.20 1.30 Initial Volume of NaOH, cm3

  2. The purpose of this lab was to observe chemical changes, to write balanced equations, ...

    * Reaction 4: Decomposition of hydrogen peroxide in the presence of manganese dioxide catalyst. Materials: Test tube, test tube rack, hydrogen peroxide (H2O2), manganese dioxide, wooden splint, matches 1. Place 5 mL of hydrogen peroxide into a test tube. 2. Prepare a glowing splint. 3.

  1. flame test lab

    * HCl (hydrochloric acid) - concentrated Apparatus - 1 beaker (for hydrochloric acid (HCl)) and cover - Bunsen burner - 6 petric glasses - hand spectroscope - electric lamp - spatulas - crucible tongs - flame test wire Procedure 1.

  2. Rates of Reaction Lab

    There may be several reasons behind this, such as; the apparatus used may not have been completely leak-proof and airtight. Another reason behind this may have been because the syringe piston was not lubricated sufficiently, so that a certain volume of gas had to be collected before the piston was pressured to move outwards.

  1. Can one determine the coefficients of a balanced chemical equation by having the mass ...

    chloride and aluminum chloride is judged to be insufficient considering the many sources of error that are present in the procedure. The very second step is to shine the aluminum to get rid of the aluminum oxide that could interfere with the reaction.

  2. Energetics Design Lab

    This limitation cannot be fully avoided but can be easily improved. Realistic improvements to this limitation include: * Doing the reaction straight in a Styrofoam cup and not in the copper cup which was placed in the Styrofoam cup. Due to the fact that copper is an extremely bad insulator,

  1. Enthalpy Change of a Displacement Reaction

    According to the graph, it can be seen that the reaction is exothermic due to rising in the temperature. Therefore, the heat released by the reaction needs to be calculated. 1. The heat released by the reaction a)The mass of water.

  2. Percent Yield Lab. This experiment has proven that KI is the limiting reagent ...

    Conclusion: In conclusion this experiment led students to find the limiting and excess reagent after their prediction of Pb (NO3)2(aq) +2KI (aq) PbI2 (s) + 2KNO3. The limiting reagent in the lab was KI because it had the least moles.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work