• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

experiment Hess Law

Extracts from this document...

Introduction

Name : Mohd Haziq Al-Hakim Bin Hamirruddin Class : M08F Date : 9 July 2009 Practical : 16 Data Collection and Processing Part A:- Mass of magnesium ribbon = 0.2836 � 0.0001g Volume of 0.5 M of HCl = 50.0 � 0.5 cm3 Reactant Initial Temperature, � 0.5�C Highest Temperature, � 0.5�C Mg + HCl 27.0 40.5 Table 1 shows the initial and highest temperature for reaction between Mg and HCl To calculate the change in temperature, the following equation will be used:- Reactant Change in Temperature, � 1.0�C Mg + HCl 13.5 Table 2 shows the change in temperature for reaction between Mg and HCl Equation for part A:- Mg (s) + 2HCl (aq) --> MgCl2 (aq) + H2 (g) Mole of magnesium Mole of hydrochloric acid = mass = MV RMM 1000 = 0.2836 g = 50.0x0.5 24.3 1000 = 0.0118 mol = 0.025 mol Thus, ...read more.

Middle

30.0 Table 3 shows the initial and highest temperature for reaction between MgO and HCl To calculate the change in temperature, the following equation will be used:- Reactant Change in Temperature, � 1.0�C MgO + HCl 2.0 Table 4 shows the change in temperature for reaction between MgO and HCl Equation for part B:- MgO (s) + 2HCl (aq) --> MgCl2 (aq) + H2O (l) Mole of magnesium oxide Mole of Hydrochloric acid = mass = MV RMM 1000 = 0.4985g = 50x0.5 (24.3+16) 1000 = 0.0124 mol = 0.025 mol Thus, the limiting reagent is magnesium oxide Calculation: Heat change, Q = mc?T = 50g � 4.2 Jmol-1�C-1 � 2 �C = 420 J ?Hrxn = -420_ 0.0124 = -33.87 kJmol-1 Uncertainties: Mass = = 1.0 % Temperature = = 50.0 % No of mole = = 8.1% Total = 59.1% ?Hrxn = -33.87 kJmol-1 � 59.1 % Since the reactions are exothermic, the ?Hrxn for each reaction is negative. ...read more.

Conclusion

+ 2HCl(aq) � MgCl2(aq) + H2(g) ?Hrxn = -240.25 kJmol-1 � 9.25% MgCl2(aq) + H2O(l) � MgO(s) + 2HCl(aq) ?Hrxn = +33.87 kJmol-1 � 59.1% Mg(s) + H2O(l) � MgO(s) + H2(g) ?Hrxn = -206.38 kJmol-1 � 68.35% ?Hrxn = -206.38 kJmol-1 � 16.12 % For the theoretical value: 1. Mg(s) + (g) MgO(s) ?Hrxn = -601.8 kJmol-1 2. H2(g) + (g) H2O(l) ?Hrxn = -285.8 kJmol-1 By reversing equation 2: 3. H2O(l) H2(g) + (g) ?Hrxn = +285.8 kJmol-1 The theoretical value of the reaction, equation 1 + equation 3: Mg(s) + (g) MgO(s) ?Hrxn = -601.8 kJmol-1 H2O(l) H2(g) + (g) ?Hrxn = +285.8 kJmol-1 Mg(s) + H2O(l) MgO(s) + H2(g) ?Hrxn = -316.0 kJmol -1 ?Hrxn obtained from this experiment = -206.38 kJmol-1 The theoretical value of ?Hrxn = -316.0 kJmol -1 Percentage error = Theoretical value - Experimental value Theoretical value = = 34.69% Reference: Chemistry: A Central Science by Brown, Le May and Bursten ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Experiment - The Empirical Formula of Magnesium Oxide

    As shown on the graph, R2 (the correlation coefficient) equals to 0.5751, indicating that the data was not very reliable since the value was away from 1. In addition, the data points did not spread out, i.e., they were gathering at 0.004 to 0.006 moles. Consequently, the gradient was influenced.

  2. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    ?H 1 = Mg(s) + 2HCl (aq) � MgCl2(aq) + H2(g) -4.44* 102 kJ/mol ?H 2 = MgO(s) + 2HCl(aq) � MgCl2(aq) + H2O(l) -1.69 * 102 kJ/mol ?H 3 = H2(g)

  1. Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

    2.Mass of oxygen that combine with Mg ( in grams) +0.0001= 0.2275g (Mass of oxygen = mass of magnesium oxide, crucible, lid - mass of magnesium, crucible, lid) 3.Number of moles of magnesium. = 0.0149Mole (the number of moles of magnesium = mass / atomic weight .

  2. Hess's Law. The experiment conducted was meant to determine the enthalpy of formation of ...

    Trial 1 information was not included in the lab due to large human error during the experiment. Table IX: Enthalpy of Formation of CaO Original Equation Enthalpy of Formation (kJ/mol) Ca(s) + 1/2O2(g) --> CaO(s) - 336.7 � 1.4 Trial 2 Table X: Enthalpies of Reaction After Manipulating The Given Equations for MgO Manipulated Equation Enthalpy of Reaction (kJ/mol)

  1. Thermodynamics: Enthalpy of Neutralization and Calorimetry

    NaCl Solution - Table 4 Trial 1 Trial 2 Trial 3 Measured Average Mass of Calorimeter 7.921 g 7.803 g 8.035 g Mass of Calorimeter and NaCl Solution 101.862 g 106.455 104.93 g Mass of Calorimeter and NaCl Solution and Hot Water 148.68 g 145.94 g 147.85 g Mass of

  2. Confirming Hess's Law Experiment

    0.001g mHCl = (D) (V) = (1.016g/mL)(100.0 ? 0.5mL) = 101.6 ? 0.5g mtotal = (0.291 ? 0.001g) + (101.6 ? 0.5g) = (101.9 ? )g = 101.9 ? 0.5g c = 4.18 J/g?C ?T = 13.2 ? 0.14 ?C Q = - (101.9 ? 0.5g)(4.18 J/g?C)(13.2 ? 0.14 ?C)

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    it would not be possible to draw a good graph using points that are unevenly spaced apart Time interval is taken to be 5 seconds between each reading. Room temperature and pressure Conditions under which the experiments are performed should remain constant The experiments were carried out in the same room and on the same day.

  2. The aim of this experiment is to examine the enthalpy of combustion of the ...

    This increase is attributed to the fact there is 1 more C-C bond and 2 more C-H bonds broken each time, which means the burning of the fuel is more exothermic so more heat will be given out to the surroundings and the enthalpy change will be greater.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work