• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Finding the empirical formula of MgO

Extracts from this document...

Introduction

Andrew Pelly 21.09.08 Finding the Empirical formula of Magnesium Oxide Introduction The objective of the experiment was to discover the empirical formula of Magnesium oxide by using stoichiometry. The hypothesis was that the formula would be MgO because oxygen has two extra electrons, and magnesium is missing two electrons from an octet, and so one particle of the negatively charged oxygen would combine with the positive magnesium to complete the resulting substances' outer shell of electrons.1 Materials 1 Hoop Clamp Stand 1 Clay piped triangle 1 Crucible (without lid) ...read more.

Middle

The crucible was then placed in the clay piped triangle, which was then itself placed on the hoop clamp stand. A source of heat (Bunsen Burner) was then applied to the suspended crucible(see Fig.1), and the magnesium was brought to the temperature where it starts reacting with oxygen present in the air. Once the magnesium appeared to have completed its reaction (see Fig. 2) the crucible was removed from the clay piped triangle and its mass was recorded again. ...read more.

Conclusion

yield= 1.722 grams of Magnesium oxide Percentage yield=1.503 grams, or 87.28% Conclusions The Magnesium almost certainly reacted to form the compound MgO. The yield was 87.28% of the theoretical yield for MgO, so it is very unlikely that any MgO2 was formed or the yield(in grams) would have been higher. This accepted the classes' hypothesis that Magnesium and oxygen would react in this way due to their electron shell configuration. 1 I don't know if this is right, but its what I understood from class ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Experiment - The Empirical Formula of Magnesium Oxide

    E.g., the absolute uncertainty of magnesium = � (0.001 + 0.001) = � 0.002g The mass of oxygen was reached by subtracting the mass of magnesium from the mass of magnesium oxide; thus, the absolute uncertainties of the mass of oxygen were the addition of the uncertainties of the mass

  2. Lab Experiment : The change in mass when magnesium burns. (Finding the empirical formula ...

    The atomic weight of magnesium is 24.3 g / mole ) 4.Number of moles of oxygen atoms that were used. = 0.0122Mole (the number of moles of oxygen = mass / atomic weight . The atomic weight of magnesium is 16.0 g / mole )

  1. An Experiment to Determine the Empirical Formula of Lead Iodide

    10) Approximately 1.2 g of potassium iodide (KI) was weighed. 11) Potassium iodide was transferred to a clean 150 cm3 beaker. 12) 60 cm3 of distilled water was added to this beaker. 13) This beaker was heated until it steams. 14) The solution was cooled slightly. 15) 1/3 of this solution was poured into beaker #1,2 and 3.

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    Graph 2: Highest temperature reached in Part X, Trial 2. Figure 2: Zoomed in view of the y-axis and horizontal line intersection. From the figure, the value for the maximum temperature reached can be safely estimated to be 40.8oC. Since the maximum temperature reached by the solution of 15cm3 water

  1. Finding thr Percentage Composition of Magnesium Oxide

    Calculate the percentage composition of magnesium oxide using your experimental data from Part A. The percentage composition of magnesium is 61.76% and the percentage composition of oxygen is 38.24%. 1. Calculate the percentage composition of magnesium oxide using your experimental data from Part B.

  2. Chemistry Investigation to find the Empirical Formula of Magnesium Oxide

    With many of the data remove the number of trials decreased along with the reliability. The precision of the data can be shown by the R2 on Graph 1. The R2 value represents the decent fit to which the range from 0.1 to 1.

  1. Discovering the formula of MgO

    Apparatus and chemicals: 1. Crucible with lid 2. Bunsen burner 3. Tripod 4. Tongs 5. Balance 6. Pipe clay triangle 7. Beaker 8. Magnesium ribbon Hazards-Safety: 1. Inhalation of magnesium oxide fumes can cause metal fume fever therefore ensure that the room is well ventilated.

  2. The purpose of this lab was to calculate the heat of formation for magnesium ...

    1.5064g ± 0.0001g ±0.001g = 0.0066% 1. Calculate the mass of hydrochloric acid (HCl) heated. Assume that density of HCl is the same as water:1.00g/cm3 Solution: mHCl = DHCl. VHCl mHCl = 1.00g/cm3. 100cm3 mHCl = 100g 1. Calculate the temperature change, ΔT, of the HCl.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work