• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Gas Law Stoichiometry Through Airbag Simulation. The purpose of this lab is to determine the correct ratio of baking soda and vinegar that leaves leaves no appreciable amount of either reactant leftover and yet fully inflates the bag without bursting.

Extracts from this document...

Introduction

Gas Law Stoichiometry Through Airbag Simulation Purpose- The purpose of this lab is to determine the correct ratio of baking soda and vinegar that leaves leaves no appreciable amount of either reactant leftover and yet fully inflates the bag without bursting. Materials- Water, ziplock bag, graduated cylinder, scale, baking soda, vinegar, goggles, apron, thermometer, and calculator. Variables- Dependent- Amount of CO2 Independent- Vinegar Controlled- Baking soda Procedure- 1) Calculate how much baking soda should be used 2) Fill the bag with water and empty into graduated cylinder to find the volume of the bag 3) Measure out amount of calculated baking soda 4) Pour first trial amount of vinegar into bag and put it in one corner 5) ...read more.

Middle

Therefore our calculations for the amount of baking soda was correct while the amount of vinegar was wrong. In order to find the amount of vinegar needed we had to do trial and error which led us to conclude that 4.84 grams of baking soda with 62.2 mL of vinegar will react completely to fill up our ziplock bag without bursting it. Discussion of Theory- This lab helped to prove that the combined gas law(PV=nRT) is true. This was proven by the fact that our amount of baking soda we thought we should use after calculations was correct and did not need to be changed. Error of Analysis- We failed to take into the account that the bag had to be shaken in order to make ...read more.

Conclusion

Abstract- The purpose of this lab was to determine what amount of baking soda and vinegar would mix together to form enough CO2 to fill the bag without bursting through the combined gas law. To do this we had to find the volume of the bag and plug that into the combined gas law to determine the amount of baking soda to use. We then added this amount with an amount of vinegar to see which way worked. We found that the amount of baking soda the combined gas law gave us was correct but that we had to alter the amount of vinegar. We also noted that the reaction was endothermic because of the temperature drop. Therefore we were able to conclude that the combined gas law did work in helping to determine what amount of baking soda to use. Christina Cartagena 8/22/10 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    Heat could have been lost to the surroundings through the Styrofoam cups because we were not provided with the proper equipment to cover the cup while the experiment was going on. This would affect the temperature change value and in turn, the molar enthalpy value for that reaction by giving us lower results in comparison to the Table value.

  2. IB IA: Gas Law Experiment - testing Boyles Law, Charles Law and Ideal Gas ...

    mass = number of mol m/M = n Hence, PV = nRT PV = m RT M M= m RT PV In this case, R: 8.134JK-1mol-1 P: 733mm Hg X 101.325 kPa 760mm Hg =97.7253 kPa V: 155.0 cm3 1000 =0.155 dm3 T: 73.30 �C + 273.15 =376.42 K Relative

  1. Validating Hess's law

    by its specific heat capacity (Cp) and the change in temperature (?T). Since this reaction takes place in solution, which we assume to be mostly water. Hence the mass of the solution will be 50g and the specific heat capacity is given as 4.2J/g/�C.

  2. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    The volume of the bag will then allow the calculations of the amount of baking soda and hydrochloric acid needed to create a reaction. Once the volume of the Ziploc bag is known, the atmospheric pressure as well as the water vapour pressure as well as the temperature must be

  1. Chemistry Lab Report Stoichiometry

    Molar mass of H2O (g/mol) Mass in moles of H2O (mol) Mass of CuSO4 (g) Molar mass of CuSO4 (g/mol) Mass in moles of CuSO4 (mol) 5.2 18.02 0.29 9.8 159.61 0.06 For CuSO4. x2H2O = 4.8 Calculations for the 3rd trial: Mass of H2O (g)

  2. Can one determine the coefficients of a balanced chemical equation by having the mass ...

    of the Reaction Quantitative Properties Values Mass of Aluminum Before the Reaction(�0.01g) 2.48 Mass of Aluminum After the Reaction(�0.01g) 1.48 Mass of Aluminum Reacted(�0.02g) 1.00 Molar Mass of Aluminum(gmol-1) 26.98 Moles of Aluminum(�0.0007mol) 0.0371 Mass of Copper with Filter Paper(�0.01g)

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    + O2 (g) ? MgO (s) ----------------- ?HMgO = -432.2kJ.mol-1 Error Propagation: Total Error = Random Error + Systematic Error To calculate the total random error percentage, the percentage uncertainty of the smallest reading on each apparatus is added. Also, since the final value of ?HMgO was computed using the

  2. Chemistry Internal Assessment Hesss Law

    This would have lowered the value of ?T and therefore lowered the value of ?H. Although we extrapolated our line to minimize the effect of heat gain this still would have been very significant, and is the most probably cause of our percentage error.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work