• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Gas Law Stoichiometry Through Airbag Simulation. The purpose of this lab is to determine the correct ratio of baking soda and vinegar that leaves leaves no appreciable amount of either reactant leftover and yet fully inflates the bag without bursting.

Extracts from this document...

Introduction

Gas Law Stoichiometry Through Airbag Simulation Purpose- The purpose of this lab is to determine the correct ratio of baking soda and vinegar that leaves leaves no appreciable amount of either reactant leftover and yet fully inflates the bag without bursting. Materials- Water, ziplock bag, graduated cylinder, scale, baking soda, vinegar, goggles, apron, thermometer, and calculator. Variables- Dependent- Amount of CO2 Independent- Vinegar Controlled- Baking soda Procedure- 1) Calculate how much baking soda should be used 2) Fill the bag with water and empty into graduated cylinder to find the volume of the bag 3) Measure out amount of calculated baking soda 4) Pour first trial amount of vinegar into bag and put it in one corner 5) ...read more.

Middle

Therefore our calculations for the amount of baking soda was correct while the amount of vinegar was wrong. In order to find the amount of vinegar needed we had to do trial and error which led us to conclude that 4.84 grams of baking soda with 62.2 mL of vinegar will react completely to fill up our ziplock bag without bursting it. Discussion of Theory- This lab helped to prove that the combined gas law(PV=nRT) is true. This was proven by the fact that our amount of baking soda we thought we should use after calculations was correct and did not need to be changed. Error of Analysis- We failed to take into the account that the bag had to be shaken in order to make ...read more.

Conclusion

Abstract- The purpose of this lab was to determine what amount of baking soda and vinegar would mix together to form enough CO2 to fill the bag without bursting through the combined gas law. To do this we had to find the volume of the bag and plug that into the combined gas law to determine the amount of baking soda to use. We then added this amount with an amount of vinegar to see which way worked. We found that the amount of baking soda the combined gas law gave us was correct but that we had to alter the amount of vinegar. We also noted that the reaction was endothermic because of the temperature drop. Therefore we were able to conclude that the combined gas law did work in helping to determine what amount of baking soda to use. Christina Cartagena 8/22/10 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB IA: Gas Law Experiment - testing Boyles Law, Charles Law and Ideal Gas ...

    mass = number of mol m/M = n Hence, PV = nRT PV = m RT M M= m RT PV In this case, R: 8.134JK-1mol-1 P: 733mm Hg X 101.325 kPa 760mm Hg =97.7253 kPa V: 155.0 cm3 1000 =0.155 dm3 T: 73.30 �C + 273.15 =376.42 K Relative

  2. Change of Potential Difference in Voltaic Cells Lab Report

    Volumetric flask uncertainty 2. The total uncertainty for the volumetric flask is. This is because, throughout the experiment, a 250 ml volumetric flask was used for zinc sulfate solution, a 250 ml flask was used for potassium chloride and a 50 ml, and 100 ml volumetric flasks were used for copper sulfate solution.

  1. Hesss Law Lab, use Hesss law to find the enthalpy change of combustion of ...

    between magnesium oxide and hydrochloric acid is 1:2 according to the balanced chemical equation. magnesium is the limiting reactant. This is the amount of energy which is given out for 0.25g. If we convert this to mol, we will get = (mass/molar mass)

  2. Validating Hess's law

    Measure out 50cm3 of 1M hydrochloric acid into a measuring cylinder and record its temperature. Calculate the average initial temperature of the acid and the alkali. Add the acid to the alkali in your polystyrene cup and record the maximum temperature reached. Calculate the enthalpy change of this reaction inkJmol-1.

  1. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    The volume of the bag will then allow the calculations of the amount of baking soda and hydrochloric acid needed to create a reaction. Once the volume of the Ziploc bag is known, the atmospheric pressure as well as the water vapour pressure as well as the temperature must be

  2. Investigation 1 ANALYSIS OF BAKING SODA

    Read the first volume number of HCL. d. Put some HCL solution to the flask that with no foam. Then read the volume number of HCL added. e. Add 1~2 drops of thymol blue indicator to the flask. Then we can see the mixture turn red.

  1. Chemistry Limiting Reactant Lab

    than of calcium chloride (0.013 � 7 x 10-4mol) in the reaction. Because sodium carbonate is the excess reactant, not all of it is used in the reaction. This means that 0.005 � 2 x 10-3mol of the excess reactant would also be found in the filtered solution as it did not react with the calcium chloride and is soluble.

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    2.1K Since total heat released = Q = mc.ΔT * Q = 15 × 4.2 × 2.1 = 132.3J Number of MgCl2 produced = Number of moles of MgO used Number of Moles of MgO used = = 0.0012moles Number of Moles of MgCl2 used =0.0012moles Std.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work