• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

In this lab, we will use the sodium hydroxide to determine the percent acetic acid in vinegar using titration.

Extracts from this document...


Introduction: In this lab, we will use the sodium hydroxide to determine the percent acetic acid in vinegar using titration. Materials used: 1. Burette 2. Beaker 3. Vinegar 4. Sodium hydroxide 5. Phenolphthalein 6. Funnel Raw data: Quantitative: Trial # Mass of vinegar (g ±0.01 g) Initial volume of NaOH (mL ± 0.05 mL) Final volume of NaOH (mL ± 0.05 mL) 1 3.70 0.15 13.35 2 3.94 13.35 28.05 3 3.76 28.05 41.15 Qualitative: 1. As we add sodium hydroxide to vinegar with the phenolphthalein the solution instantly turned pink and then instantly turned colorless. 2. As we got closer to equating the moles of H+ Ions with OH- the pink would stop turning into colorless leaving a pale pink color. Data processing: Trial 1: In order to determine the mass of the acid, we have to calculate the moles of acetic acid used, and we can get that by multiplying the volume of sodium hydroxide used by its molarity that we got in the previous lab where we standardized a base. ...read more.


1. 2. Now for the uncertainty of the final result: 1. 2. This uncertainty is confusing to put next to our result since it is in percentage too, since this 5.80% of 4.70%, I turned value to an absolute value for convenience: 1. So the final result will be: Percent error: According to my sources, the theoretical value of percent acetic acid is between 4% and 6%, I used the average of the values which is 5%. Now we can calculate the final percent error: 1. 2. 3. Applying the calculations for trail 1 and trail 2, we get the following data table: Trial Volume used (mL ± 0.10 mL) Moles of acetic acid Mass of acetic acid Percent acetic acid in vinegar Percent error 1 13.20 0.00290 moles (± 5.53%) 0.174 g (± 5.53%) 4.70% (± 0.273%) 6.00% 2 14.70 0.00323 (5.45%) 0.194 g (±5.54%) 4.92% (± 0.280%) 1.60% 3 13.10 0.00288 (±5.53%) 0.173 g (± 5.53%) 4.60% (± 0.267%) 8.00% I took the average of the values and got: With a percent error of: 1. 2. 3. ...read more.


We can easily fix this by sealing or insolating the reaction by simply covering the burette with a cork and by sealing the beaker that we titrated in with a plastic wrap but leaving a hole for letting the base through. Another thing to consider is the fact the phenolphthalein might have affected the lab. Since this is a weak acid strong base titration, the end point is above 7 pH. The range at which phenolphthalein turns from colorless to pink is from 8.2-10.0. This means that the endpoint was not reached because the phenolphthalein turned pink the lower ranges. This will decrease in the value of volume used thus the moles of acetic acid, which leads to the decrease of the percent acetic acid. We can fix that by doing more trials but with different indicators each time, this will help us determine or verify out endpoints. This makes sense because in trial 2, the value of volume of base used was higher than all trials, and in that trial the solution was not paler than the others, it was violent pink, and we got a better value than the other two trials. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Acid Base Titration Lab Report. The purpose of this experiment is to determine ...

    Always check for air bubbles before starting the titration. If an air bubble is found close to the tap of the burette, it is advisable to open the tap to enable the air bubble escape. This is a systematic error so the burette should always be checked before use.

  2. Oxalic Acid Titration Lab

    When the concentration of the acidic solution was known, the total number of moles of the acid in the initial solution was calculated as a product of the concentration and the volume of the initial solution - 250cm3. From periodic table it is known that the molar mass of oxalic acid without the water of crystallization is 90.0gmol-1.

  1. The purpose of this lab experiment is to determine whether different ionic compounds containing ...

    chloride solution with an average 0.001650 kPa/s rate, then sodium iodide mixed with ethanol with 0.002651 kPa/s average evaporation rate and lastly the sodium fluoride dissolved in ethanol with a 0.003782 kPa/s average rate. Also, the pure ethanol had such different trends and slopes because of the temperature in the room, and it at times it didn't evaporate.

  2. Free essay

    pH titration curves Lab Report. How does the use of a strong acid with ...

    Furthermore, another table can be added to conclude the overall average of the three trials. Thus, this would enhance the accuracy of the results obtained from the pH titration experiment. How does the use of a strong acid with a strong base and the use of weak acid with a strong base affect the pH titration curves?

  1. Thermometric titration lab

    The highest point (of temperature) on the graph will be the point of neutralization. CA= CB x VB VA CA= concentration of Acid CB= concentration of base VB = volume of base (cm3) VA= volume of base (cm3) CA = 1.00 x 25.0 6.66 (as obtained from the graph after extrapolation)

  2. Titration Lab

    I made up to 100cm� of the solution into a volumetric flask and mixed the solution.

  1. pKa. When constant successive portions of Sodium Hydroxide are added to Acetic Acid; how ...

    The graph is known as the Titration/pH curve and the theoretical pH curve of the neutralization reaction between Acetic acid and Sodium Hydroxide is provided below: Figure 1: Theoretical Titration curve of Acetic acid and Sodium Hydroxide. This picture was obtained through www.google.com/images/titrationcurve The flat portion of the titration curve before the end point (refer to figure 1)

  2. Determining Ka by the half-titration of a weak acid

    Thus systematic error only makes 2% of the error while random error makes 3% of the error. Thus the significant error is random errors. This was due to the subjectiveness at seeing the half-titration points. As we relied on the fact that the phenolphatlein made the solution light pink, it was difficult to see such color change.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work