• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Iodine Clock

Extracts from this document...

Introduction

USING THE IODINE CLOCK METHOD TO FIND THE ORDER OF REACTION Apparatus: * Thermometer [0-110 �C] * Boiling tubes [10 cm3 �0.05] * Test tubes * Potassium iodine solution 1 mol dm-3 [15 cm3] * Potassium peroxodisulphate (VI) 0.04 mol dm-3 [10 cm3] * Sodium thiosulphate 0.01 mol dm-3 [10 cm3] * Starch solution [5 cm3] * Stopwatch [�0.5 s] Safety: Eye protection must be worn. Potassium peroxodisulphate (VI)- harmful and flammable Method: 1) First you are going to make up reaction mixture 1 from Table no 1, and measure how long it takes for the blue iodine-starch colour to appear. In each experiment use 2cm3 of sodium thiosulphate, 2cm3 of potassium peroxosulphate. Volume of each solution is 10cm3. To the first mixture add 5 cm3 of potassium iodide solution and do not add water. To second mixture add 4cm3 of potassium iodide solution and 1cm3 of distilled water. In third experiment pour 3cm3, in fourth 2cm3 and in the last one 1cm3 and add appropriate volume of water. ...read more.

Middle

Table3: The values of average time taken for the reaction to be visible and its uncertainty. Measurement Average Uncertainty 1 12.0 0 2 16.5 1.5 3 28.5 1.5 4 55.5 2.5 5 188.0 4.0 Rounded to 1 decimal place To determine the order of reaction using the iodine clock method, some of the calculation were necessary. At first, I calculated the [I-] concentration in each of 5 solutions using the equation: C[I-]= where VKI is the volume of KI solution [KI] is the KI concentration Vtotal is the total volume of solution On the example of 5th mixture: C[I-]= Table 5: The concentration of iodide in each solution Mixture Concentration of ions [mol dm-3] 1 0.5 2 0.4 3 0.3 4 0.2 5 0.1 Having calculated the concentration of [I-] ions, it is important to determine whether any reagent is in excess. To do that, I needed to calculate the concentration of iodide ions and the concentration of peroxodisulphate(VI) ions in mixture 5th. C[I-]= C[S2O3 2-]= It can be seen that the [I-] ions are in excess. ...read more.

Conclusion

The shape of the curve on the graph indicates that it is the reaction of first order. Conclusion and evaluation: The aim of the experiment was to find the order of the reaction using the iodine clock method. Using raw and calculated data I managed to determine its order and compare it with the literature. Rate of reaction and time in which it occured were necessary for the experiment. The graph showing the relationship between the iodide ions concentration and the rate of reaction was the key concept for establishing accurate order of reaction. The range of [I-] concentration was not very wide, but more than satisfying. The rate of reaction in the given range increases constantly but not directly proportional. The shape of the curve on the graph allow me to recognize the first order of reaction. Sadru Damji in "Chemistry 2nd Edition" present more accurate graph for the first order of reaction: rate [A]concentration As can be observed, the graph I created and that presented by Sadru Damji follows similar trend. My graph is not directly proportional, but its shape indicates it's a first order reaction. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Determining the activation energy of a reaction, By using the experimental data and the ...

    This is shown as follows: = -6368.5 -6368.5 8.31 -1 = 52900 Joules per mole (3sf)= 52.9 kilojoules per mole Where the gradient is measured over the range of 0.00310~0.00330 K-1. Uncertainties As with any experiment, uncertainties existed throughout this investigation.

  2. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    Now, despite of the shape of the temperature graph, to analyse the rate equation, I have: Rate = k [luminol]0[ H2O2]2 Rate = k [H2O2]2 As a conclusion, luminol has no effect on this reaction, it is because it has zero order for the reaction, while hydrogen peroxide has second

  1. IB chemistry revision notes

    Then, energy is released as new bonds are made. * If energy is lost (exothermic reaction), then the products are more stable than the reactants. In endothermic reactions, the reactants are more stable then the products * Breaking bonds -->endothermic, + * Making bonds --> exothermic, - Hess' Law It

  2. Aim: Using an iodine clock reaction to find the order of hydrogen peroxide and ...

    Pressure Controlled The experiments were all carried out at the same altitude. The pressure was 1 atm. Total Volume of Solution Controlled Since the solutions did not create 20ml each most of the time, the appropriate amount of water was added to a solution in order to make it equal 20ml.

  1. Enthalpy Change Design Lab (6/6)How does changing the initial temperature (19C, 25C, 35C, and ...

    uncertainty to the measurements and therefore limits the accuracy of the dependent variable in pursuit of the research question. Therefore, to control this variable, 40.0 cm3 of 1.00 mol dm-3 HCl(aq) and 40.0 cm3 of 1.00 mol dm-3 KOH(aq) will be measured out for each variation in temperature (19�C, 25�C, 35�C, and 45�C)

  2. Research Question Find the rate expression for a reaction between propanone and iodine

    It can cause severe damage to the upper respiratory tract. * Wear a lab coat to avoid skin contact with chemicals Method In each experiment, the independent variable is the concentration of the substance which is being changed. The dependant variable is the rate of reaction, shown by the time taken for the solution to become colourless.

  1. Rate of Reaction sodium thiosulphate

    Method for data collection: * Mark a piece of paper with a felt tip pen * Put an empty beaker over the marked spot * Adjust the concentration according to the selected amount between 0 -1M. * Fill up the test tube with distilled water until the 10ml line according to the ratio of concentrations of sulphuric acid (e.g.

  2. Reaction Rate

    Collect all necessary equipment from the equipment table- all equipment should be in one tray. 1. Setup the retort stand and clamp on a stable desk. The clamp should be fixed approximately half way up the stand. 1. Open up Photo Booth or a similar video/image-capturing program on a laptop

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work