• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Molar volume of hydrogen

Extracts from this document...


Aim: To determine the volume of Hydrogen gas is produced when Magnesium reacts with Hydrochloric acid. Materials: Coil of Copper Wire, Hydrochloric Acid (3mol), 1.0 cm & 1.5 cm pieces of Magnesium strip. Stand and Clamp, Barometer, Thermometer, Beaker (200ml), Gas measuring tube Method: As on the experiment sheet Data Collection: Table 1.1 - The Length of the Magnesium strips with corresponding volumes of Hydrogen gas produced. Mg Length ( cm ) + 0.1 cm Mass Mg ( g ) + 0.001 g Volume 1 ( cm3 ) + 0.1 cm3 Volume 2 ( cm3 ) + 0.1 cm3 Volume 3 ( cm3 ) + 0.1 cm3 Average Volume ( cm3 ) + 0.3 cm3 1.0 0.021 17.2 18.0 17.8 17.7 1.5 0.032 27.0 26.8 28.3 27.4 2.0 0.043 36.0 36.0 37.0 36.3 2.5 0.053 49.0 43.5 46.3 3.0 0.064 56.0 53.8 54.9 3.5 0.076 58.4 58.4 4.0 0.085 67.8 67.8 4.5 0.094 77.0 81.2 79.1 Table 1.2 - Moles of hydrogen and the volume of hydrogen produced Moles of Hydrogen (mol) ...read more.


Measuring the amount of Hydrochloric Acid Measuring and cutting of Magnesium strips. Magnesium strips broken into pieces. Not taking the measurement of the volume of Hydrogen gas correctly due to parallax error. Uncertainties within Experiment: Measuring Cylinder � 0.05mL Gas measuring tube � 0.1mL Thermometer � 0.05�C Barometer � 0.05Kpa Ruler � 0.1mm 1. Calculate the mass and number of moles of magnesium used in your experiment. Number of moles used = mass of mg used (g) gram formula mass of mg (g/mol) = 0.021�0.1g 24.31 = 0.0008638 = 8.64 x 10 -4 � 0.1g 8.64 x 10 -4 � 0.1g moles of Magnesium was used. Calculate the number of moles of Hydrochloric acid. Moles of HCl = ( 8.64 x 10 -4) x 2 = 17.28 x 10 -4 = 1.73 x 10-3 � 0.2 2. From the partial pressure of water supplied calculate the partial pressure of Hydrogen using the formula. P atmosphere = P Hydrogen+ P water P atmosphere = 101.02 kPa � 0.1Kpa P Hydrogen =? ...read more.


Moles of hydrogen used against the volume of hydrogen produced. Moles of hydrogen against the volume of hydrogen produced, with a trend line and equation of the graph. 2. Describe the relationship between the two variables and indicate any proportionality that exists. The amount of Hydrogen gas that was produced is generally proportional to that of the moles used in the reaction. Although one point on the graph that is not proportional, this is most likely due to an error. Analysis Section: 3. From the graph determine the volume of hydrogen when the number of moles of hydrogen produced is 1.2 x 10-3 mol. Approximately 25.0cm3 of Hydrogen gas would be produced when the moles of hydrogen is 1.2 x 10-3. 4. From your graph calculate a constant of proportionality between the two variables (the gradient). Points: A (0.00129, 27.4) B (0.00172, 36.3) Gradient 1 = y2-y1 x2-x1 = 36.3 - 27.4 0.00172 - 0.00129 = 8.9 0.00043 = 20697.7cm3 = 20.7 dm3 Points: A (0.00344, 67.8) B (0.00387, 79.1) Gradient2 = y2-y1 x2-x1 = 79.1 - 67.8 0.00387 - 0.00344 = 11.3 0.00043 = 26279.07 cm3 = 26.3dm3 Average = 10.1 0.00043 = 23488.4 cm3 = 23.5 dm3 ?? ?? ?? ?? Chemistry Chemistry ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays


    To make this clearer, it means that catalysts only help to overcome activation energy in order to conserve the rest of the energy for the reaction. The more energy there is left the faster the reaction will be. This would explain why adding more catalyst causes an increase in the rate of decomposition.

  2. IB chemistry revision notes

    - no fixed shape. * Forces are very small- expand a lot on heating. * Fills the space available. * Easy to compress. * High entropy. Endothermic Processes * Melting o Particles are absorbing energy () o At the m.p.t.

  1. Group 4

    This meant, over the years, a constant research and development of new security measures, and even nowadays more and more new systems are introduced every day. This development gave birth to what we now consider to be the basic requirements of any safe car, such as seat belts, air bags and crumple zones.

  2. Gas laws, investigate quantitatively the relationship between the pressure and volume for nitrogen ...

    the syringe connected to the pressure gauge and the pressure recorded to +/- 0.5 kPa. 2. The volume was then very gently decreased by 1.0 cm3 to 19.0 cm3 and allowed to stand for a minute and the pressure recorded after gently tapping the mechanical gauge.

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    Graph 2: Highest temperature reached in Part X, Trial 2. Figure 2: Zoomed in view of the y-axis and horizontal line intersection. From the figure, the value for the maximum temperature reached can be safely estimated to be 40.8oC. Since the maximum temperature reached by the solution of 15cm3 water

  2. Chemistry lab reort-molar volume of hydrogen

    The theoretical value of even out of the range . Since I used the same method as the second trial, method is not the source of systematic error. This indicates that some mistakes were made during the operation. The relatively large percentage error of 4.02% is mainly owing to the small fragment of magnesium fallen into the beaker.

  1. Determining the relationship between the pressure and volume of a confined gas - Boyle's ...

    ?m = * 1/V vs. Average Pressure Graph 2.2 shows 1/Volume of trapped gas (Air) in dm-3 plotted against the Average pressure exerted by it in KPa. 1. Conclusion and Evaluation ________________ 1. Conclusion ________________ In this experiment, it was deduced that when the volume of a confined gas is decreased, its pressure increases, at a constant temperature.

  2. The chemistry of atmospheric and water pollution.

    However these two compounds add to the other major environmental problem concerning the greenhouse effect. Thus their effectiveness as replacements for CFCs in a variety of uses is minimal. There needs to be more research conducted in the future to find compounds which effectively can be used for CFCs applications as well as having negligible impact on the environment.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work