• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

MOLECULAR WEIGHT OF A VOLATILE LIQUID-Lab report

Extracts from this document...

Introduction

MOLECULAR WEIGHT OF A VOLATILE LIQUID CHEMISTRY HL JAIME CASTRO A. 10-2 PRESENTED TO: KEITH RIGBY ANGLO COLOMBIAN SCHOOL EXPERIMENTAL SCIENCES DEPARTMENT RESULTS: Table1. Showing the data recorded during the experiment Trial 1 2 Mass of flask /(g) �0.01g 112.86 112.86 Mass of flask and gas /(g) �0.01g 113.66 113.66 Mass of gas /(g) �0.01g 0.80 0.80 The volume of the flask was of 325 (� 2.5) cm3 which equals 3.25x10-4 (� 2.5 x10-6 )m3, the value of the volume will now only be considered in SI units. The temperature was of 92 �0.1�C which equals 365�0.1�K, the value of the temperature will now only be considered in SI units. The Pressure will be considered as the atmospheric pressure of Bogota which is 75 kPa which equals 75000 Pa, the value of the pressure will now only be considered in SI units. ...read more.

Middle

To use this law we can consider the following values for volume, pressure and temperature; the value of the constant is 8.314 when working with SI units. Temperature: 365�0.1�K Volume: 3.25x10-4 � 2.5x10-6 m3 Pressure: 75000 Pa So if we use the previously established values in the equation we will get the number of moles of gas inside the flask. To calculate the percentage uncertainty of this value we need to add up the percentage uncertainty of the pressure, the temperature and the volume Percentage uncertainty of the volume Uncertainty: � 2.5 x 10-6 m3 Volume: 3.25 x 10-4 m3 Percentage uncertainty = 0.77% Percentage uncertainty of the temperature Uncertainty: �0.1�K Temperature: 365�K Percentage uncertainty = 0.03% So the percentage uncertainty of the number of moles of the gas is of 0.8%. ...read more.

Conclusion

CONCLUSION: Taking in count that the liquid used in this experiment was a cycloalkane and that the empirical formula of cycloalkanes is, we can determine what cycloalkane was used by just dividing the molar mass of the liquid by the empirical mass of cycloalkanes. The result of this division was 7.1 which tells us that the molecular formula for the cycloalkane used in the experiment is which is the molecular formula for cycloheptane, therefore we can conclude that the cycloalkane used in this practical was cycloheptane. EVALUATION: The total percentage uncertainty of this practical was of 2.05% which is a really small percentage which makes our results very accurate. However I can suggest repeating the practical for 2 or 3 times so that an average of the results can be obtained and the possibility of a random error can be reduced. ?? ?? ?? ?? ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Change of Potential Difference in Voltaic Cells Lab Report

    From the molar mass of copper sulfate pentahydrate, CuSO4.5H2O and the number of moles we can find the mass in grams of solute needed. Mass of copper sulfate pentahydrate = 1 249.71 = 249.71 g This mass is required to prepare 1L of 1M copper sulfate solution.

  2. Research question - How many molecules are there in a liquid drop?

    carbon 12), and one mole of any substance consists of the same number of molecules - 6.023 � 10��. However, one mole of a substance may differ in mass from one mole of another substance. This is solely because of the mass of the particles contained in that one mole of the substance.

  1. IB Chemistry - Boyle's Law Lab Report

    For the volume part, I just had to record the scale of syringe that shown according to the number of books. The more books press the syringe, the less scale of volume was shown. From the Boyles' law, P?1/V � P=k(1/V), PV=k(constant)

  2. Indicator Lab Report - investigating acid-base reactions

    The reason for this very gradual increase is due to there not being many H+ nor OH- ions, thus resulting in there being very few water molecules formed. There is a slight increase in pH as more alkali is added, but there is no equivalence point because the NH3 does not dissociate enough to be noticeable.

  1. Ionic and Molecular Compounds Lab

    tastes bitter, slippery Conclusion: The lab has given a conclusion that ionic compounds conduct electricity, and molecular compounds do not conduct electricity. A blue litmus paper will turn red upon its contact with an acid and stay blue when it contacts base or a neutral substance.

  2. Determining the Molar Mass of Volatile Liquid

    The mass of a 250 cm3 Erlenmeyer flask together with a boiling stone and an aluminum foil cap was weighed and recorded accurately on the electronic balance to the nearest 0.001g 2) Small pinhole in the foil cap was made with a pin 3)

  1. To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

    The average atomic mass of X = = 23.52g.mol-1. Since the atomic mass of X (23.52g.mol-1) is closest to the atomic mass of Sodium (22.99g/mol); it can be concluded that substance Z (X2CO3) is Sodium Carbonate (Na2CO3). Therefore, the relative molecular mass of Na2CO3 = 107.05g/mol.

  2. The chemistry of atmospheric and water pollution.

    This is why there is increased destruction of ozone in spring which also means that the ozone hole is the biggest in spring. How information is obtained Information about ozone concentrations in the stratosphere was obtained by ground-based instruments. This includes UV spectrophotometers which point upwards through the atmosphere, measuring

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work