• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Objective: 1)To practice the procedure for preparing a standard solution 2)To perform the standardization of an unknown hydrochloric acid solution 3)To determine the given sodium hydroxide solution 4)To estimate the ethanoic acid content in commercial

Extracts from this document...

Introduction

Course Code: 13554/Y1 Student Name: Chow Man Chung Lam Kwok Kei Lee Long Sing Chan Ka Chun Date performed: 22nd September, 2010 Experiment 2: Acid base titration I Objective: 1) To practice the procedure for preparing a standard solution 2) To perform the standardization of an unknown hydrochloric acid solution 3) To determine the given sodium hydroxide solution 4) To estimate the ethanoic acid content in commercial vinegar solution Apparatus & equipments used: 1) Burette, 50mL capacity 2) Bulb pipette, 25mL capacity 3) Volumetric flask, 250mL capacity 4) Conical flask, 250mL capacity 5) Analytical balance Chemicals used: 1) Anhydrous sodium carbonate 2) ...read more.

Middle

HCl : Na2CO3 = 2 : 1 ? Number of mole of HCl = (0.0123)(2)(25/250) = 0.00246 Molarity of HCl = 0.00246 / (23.183 / 1000) = 0.1062 ~0.11M Titration II: Determination of the given sodium hydroxide solution Titrant (in burette): Hydrochloric acid Titrate (in Conical flask): 25.0cm3 of NaOH Indicator used: Methyl Orange Colour of indicator changed from: yellow to pink Titration No. 1(trial) 2 3 4 Final burette reading (cm3) 23.55 23.85 47.70 23.80 Initial burette reading (cm3) 0.00 0.00 23.85 0.00 Volume of titrant used (cm3) 23.55 23.85 23.85 23.8 Average volume: 23.83 cm3 Calculation: HCl(aq) + NaOH(aq) --> NaCl(aq) ...read more.

Conclusion

number of mole of CH3COOH(dil) = number of mole of NaOH = 0.00253 Molarity of CH3COOH(dil) = 0.00253 / (16.98 / 1000) = 0.1489999 Molarity of CH3COOH = (0.1489999)(250 / 25) = 1.489999 Number of mole of CH3COOH in commercial vinegar = (1.489999)(250/1000) = 0.3725 Mass of CH3COOH in commercial vinegar = (0.3725)[(2)(12.0107)+(4)(1.00794)+(2)(15.9994)] = 22.369 The percentage of CH3COOH in commercial vinegar = (22.369 / 250)(100%) = 8.948 ~ 8.95% Conclusion: We prepared standard solution 0.05M NaOH. Through the titration I, we know that the molarity of HCl was 0.11M. In the titration II, we determinate NaOH solution is 0.1012M. At the titration III, we found out the molarity of diluted commercial vinegar is ~0.15M and also calculation out the original vinegar was ~1.49M. In calculation, we found out there are 8.95% ethanoic acid in commercial vinegar. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Analysis of the Nitrogen Content of Lawn Fertiliser

    0.002 g m(fertiliser) = 1.209 g %U = x 100 = 0.17% Pipette ? 0.06 cm3 %U = x 100 = 0.30% Burette ? 0.01 cm3 %U = x 100 = 0.25% Volumetric flask ? 0.2 cm3 %U = x 100 = 0.08% Measuring cylinder ?

  2. Calcium Carbonate and Hydrochloric Acid

    52,4632 570 52,417 210 52,4564 600 52,4136 240 52,4502 630 52,4122 270 52,4451 660 52,4100 300 52,4414 690 52,4069 330 52,4393 720 52,4068 360 52,4358 750 52,4068 390 52,4318 780 52,4068 Time (sec) Weight (g) Time (sec) Weight (g) 0 52,7463 30 52,7314 390 52,6827 60 52,7256 420 52,6799 90

  1. Acid Base Titration Lab Report. The purpose of this experiment is to determine ...

    of moles Volume N = 0.002655 moles V = 0.025 dm3 (�0.24%) Therefore, Concentration of NaOH = 0.002655 moles (�0.15%) 0.025 dm3 (�0.24%) = 0.1062 mol dm-3 (�0.39%) Table showing the three accepted trials from the experiment, the volume of KHP from each trial, the concentration of KHP, Volume of

  2. Titration experiment. Standardization of hydrochloric acid using sodium carbonate.

    So the molarity of HCl after dilution is 0.088 M + 25.2 % M. Chemical equation : 2HCl + Na2CO3 --> 2NaCl + H2O + CO2 The number of moles for Na2CO3 : 1.329 = 0.0125 moles. 106 2moles of HCl+1mole of Na2CO3 --> 2moles of NaCl+1mole of water+1mole of

  1. Free essay

    Energy content Cal/g

    from red color to burnt black color - Burnt smell - Not all of the cheeto burns by 75 seconds - heat is felt with the hand holding the paperclip with the burning food Calculations Data Table Trial 1 2 3 4 5 Change in mass (+/- .01g)

  2. Measuring the fatty acid percentage of the reused sunflower oil after numerous times of ...

    At the beginning the original design is changed. In the original one 0.1M alcoholic KOH must be used during the experiment and as the numerical results are under 10ml this concentration is changed to 0.01M. The formula contains a constant number which is the gram per millilitre for 0.1 M of oleic acid.

  1. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    Step 1: Calculating absolute uncertainty of the value for ΔHX Percentage uncertainty = Apparatus Uncertainty in apparatus Lowest quantity measured Percentage uncertainty Thermometer ±0.25 32.2oC = 0.78 % Burette (50cm3) ±0.10 15.0cm3 = 0.36% Digital Balance (g) ±0.01 0.05g = 20% Total Random Error 0.78 + 0.36 + 20 =

  2. To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

    Methyl Orange?s pH of 3.1-4.4 is appropriate for detecting pH of strong acids. Excess of 0.1M HCl To titrate substance Z solution against 0.1M HCl. Excess of distilled water To make solutions. 6.0g of solid substance Z To make solutions containing 1.5g, 2.0g and 2.5g of substance Z PROCEDURE: 1.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work