• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Preparing Salts- IB Lab

Extracts from this document...


16.01.2007 CHEMISTRY LAB REPORT 2 PREPARING SALTS (0,124 grams of CACl2) BACKGROUND INFO Calcium chloride (CaCl2) has been manufactured for over 100 years. The salt is used in a variety of industrial and consumer products, and is supplied as flakes, pebbles, pellets, powders and solutions with varying concentrations. Calcium chloride dissociates easily in water to form Ca and Cl ions. Calcium is essential for the formation of skeletons, neural transmission, and muscle contraction, coagulation of the blood, and algae and higher plant growth. Chloride ions are also required for normal cellular operations in animals and humans, and serve as a micronutrient for plants, playing important roles in photosynthesis and osmoregulation. Calcium chloride is considered to be practically non-toxic to aquatic organisms and bioaccumulation is unlikely. Calcium chloride does not burn and is not flammable. Calcium chloride is corrosive to some metals. Calcium chloride is completely soluble in water. Because calcium chloride is hygroscopic, it should be stored in a dry place and be protected from atmospheric moisture. Heat is produced when calcium chloride is dissolved in water and spattering and boiling can occur. (Calcium Chloride SIDS Initial Assessment Profile, 4, 12-14) Salts are prepared by five methods. A metal can combine directly with a nonmetal to form a salt. A metal can react with acid to form a salt and release hydrogen gas. ...read more.


36.04�0.124�110.98= 0.0828 grams of Ca(OH)2 4) We measured exactly 0.0828 grams of Ca(OH)2 . 5) We added 20 drops of HCl into the Ca(OH)2. 6) To have only salt as a product, we needed to heat the beaker so that the water would evaporate. After we heated the beaker for several minutes, we let it cool. 7) When the beaker was cool enough, we measured the salt and the beaker's mass. It was 32,5097 �0,0005 grams. To make sure that there was no water, we decided to heat and measure it again. 8) The second time we heat and cooled and measured it, we found 32, 4896 �0,0005 grams. 9) Then we washed the beaker and measured it when it's empty. We found 32.3551�0,0005 grams. 10) We subtracted the beaker and the salt's mass from the empty beaker's mass to find salt's mass. The salt's mass is 0,1345� 0,0005 grams. Our aim was to prepare 0.124 grams of CaCl2 salt. RAW DATA PROCESSED DATA 1st Measurement (�0,00005 g) 2nd Measurement (�0,00005 g) Beaker+Salt Salt Beaker+Salt Salt 32,5097 �0,0005 g 0.1546 �0,0005 g 32, 4896 �0,0005 g 0,1345 �0,0005 g CONCLUSION Our aim was to create 0,124 grams of calcium chloride. In order to prepare the salt, we used a base and an acid. To achieve our aim, first we decided which method we should use to prepare this salt. We had two options because we didn't have other materials. ...read more.


With this experiment we not only used what we have learned about preparing salts but we also used stoichiometry, which is a very important topic in chemistry. We did all the calculations and the experiment ourselves and we get to apply our knowledge. EVALUATION Although the result we get was really close, we didn't exactly find 0.124 grams of CaCl2. The percentage error of the experiment is %9. We found 0.1345 � 0,0005 grams. To make this experiment better, first of all we could have research our salt and learn more about it. We didn't know that Ca(OH)2 is hygroscopic in the first time we measured it's mass. That's why its mass may have been measured more than it should be. But the second time we measured the beaker, we were more careful however still when we let the beaker to cool, its mass might have increased. After we heated the beaker, we waited for several minutes and waited it to cool but the beaker and the salt within might have been still warm. If we measured salt's mass when it was still hot, that means we found the mass more than it should be. If we had more time, maybe we could be sure that it was in the room temperature and then measure it. Although we cleaned the beaker after the experiment, we might have left salt in it and when we measured empty beaker's mass, we might have found something wrong. We could have cleaned it more neatly. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB chemistry revision notes

    NaCl --> forms a 3D lattice where each is surrounded by six, and each is surrounded by six. It is a face centred cubic arrangement with 6:6 coordination. o Conducts electricity when molten or dissolved in aqueous solution. Here, ions are free to move around and transfer charge.

  2. acid base lab report

    = 1.999g NaOH . Part II: Observations Table 4: Observations of colour changes of Acid-Base indicators during Titration. Initial colour (before change)End point colourpH at End Point (colour change) Titration of HCl with NaOHclearPinky-red10.1 Titration of CH3COOH with NaOHredyellow6.0 Titration of NH3 with HCl Pinkyclear8.9 Discussion The determination of the

  1. Change of Potential Difference in Voltaic Cells Lab Report

    Hence, 0.05 5= 0.25 V. Percentage Error An error is the difference between a predicted value and the actual value. Percentage error is the measure of how close you came to the actual answer in a percentage form. Percentage error can be calculated using this formula: Error = The theoretical

  2. IA Lab report solubility

    (g salt in beaker) - (g salt in filter) = g salt in solution solubility (g salt in solution)*20 / (g water)*20 = g salt in solution/100 g water 5 g water was used in every test, and to get the solubility to be per 100 g water, multiplication with 20 was forced.

  1. A Comparison of Strong and Weak Acids and Bases

    Theoretical pH values for CH3COOH(aq) and NH3(aq). 1.00M of CH3COOH(aq) Chemical Equation: Necessary formulas: From the Data Booklet, pKa of CH3COOH(aq) is 4.76. Thus, Actually, the formula for dissociation constant for a weak acid is: However, since the [H+] is very, very, very small, the [H+] in ([CH3COOH(aq)] - [H+(aq)] is ignored.

  2. Reactivity of Metals with Water and Acid

    periods, because it is easier for electrons to be taken away farther to the left of the periodic table. 1. Is the solution that is produced when a metal reacts with water acidic or basic? 1. The solution that is produced when a metal reacts with water is basic, because the pH increased.

  1. Research report on Stoichiometry

    Stoichiometry is often used to balance chemical equations. The term stoichiometry is also often used for the molar proportions of elements in stoichiometric compounds (composition stoichiometry). Stoichiometry is not only used to balance chemical equations but also used in conversions, i.e., converting from grams to moles, or from grams to milliliters.

  2. Chemistry Titration Acid Base Lab

    There were few anomalous results that arose during the course of the lab. For instance, for the test using phenolphthalein, one trial had a considerably larger difference between the final and initial burette readings (volume of NaOH used) of 1.4ml.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work