• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Rate of reaction of Magnesium with Hydrochloric acid

Extracts from this document...


Title: Rate of reaction of Magnesium with Hydrochloric Acid Aim: Magnesium reacts with diluter hydrochloric acid in a conical flask which is connected to a gas syringe. The volume of Hydrogen gas produced is measured over time, and the results are used to plot a graph to determine the rate of reaction with different concentrations of hydrochloric acid. Hypothesis: I hypothesise that Hydrochloric Acid 2mol dm-3 going to be the acid that reacts fastest with Magnesium, because there is more concentration of the solute in the solution. A 2mol concentration of the solute means that there are more molecules in the solution that will crash with the Magnesium coil. The lower concentration of the Hydrochloric acid (1mol dm-3) will react slower taking into account that there are less molecules of Hydrochloric acid that will crash with the Magnesium atoms. Therefore I predict that Hydrochloric will be the acid that will take most time to react with the Magnesium. This because Sulphuric acid with the same molar concentration of Hydrochloric acid has more Hydrogen ions then Hydrochloric therefor it is a stronger acid, and thus will react faster than 1 mole of Hydrochloric concentration. Variables: Independent: Acid concentration (1mol dm-3, 2mol dm-3), Type of acid (Hydrochloric acid, Sulphuric Acid). 1mol dm-3 Hydrochloric acid, 2mol dm-3 Hydrochloric acid, 1mol dm-3 Sulphuric acid. ...read more.


Trial 1 10 cm3/10 sec = 1.1cm3/sec 55 cm3/50 sec = 1cm3/sec Difference:-.1 cm3/sec Trial 2 26 cm3/10 sec = 2.6cm3/sec 66 cm3/50 sec = 1.320cm3/sec Difference: -1.28cm3/sec Hydrochloric acid (2 mol dm-3) Trial 1 50 cm3/10 sec = 5cm3/sec 71 cm3/30 sec = 2.367cm3/sec Difference: -2.633 cm3/sec Trial 2 55 cm3/10 sec = 5.5cm3/sec 87 cm3/30 sec = 2.9cm3/sec Difference: -.2.6cm3/sec Sulphuric acid (1 mol dm-3) Trial 1 26 cm3/10 sec = 2.6cm3/sec 69 cm3/50 sec = 1.3cm3/sec Difference: -1.3 cm3/sec Trial 2 27 cm3/10 sec = 2.7cm3/sec 69 cm3/50 sec = 1.3cm3/sec Difference: -.1.4 cm3/sec Looking at the results from the experiment and the calculations done to figure out what the rate of reaction was per second, we are able to see that the starting rate of reaction is greater than the rate of reaction halfway through the experiment. This is so due to the fact that in the beginning of the experiment there is more surface area and mass of magnesium, then halfway through the experiment which is lower. We are also able to come to the deduction that a concentration of 2 moles of Hydrogen Chloride is far more effective at reacting with Magnesium (in terms of time), then a 1 mole concentration of the same. Increasing the concentration will in turn increase the frequency of the collisions between the two reactants. ...read more.


What we should have done to create a more valid experiment was to use the same member for the job; this would still change the time, but would insure a better result. Evaluation: The main weakness of my experiment was the temperature change and the gas leakage. These were the most important changes that altered the results, although there really nothing we could do to improve the leakage we could have had a time of about 5 seconds after we dropped in the magnesium coil to closing the bong. This would not mislead the experiment and then we would have much better results (even though there was some leaking gas in the 5 second period). To control the temperature we should have used a Bunsen burner and heat the substance, thus having a temperature that would remain stable throughout the experiment, and also improve further our results. To make the experiment more interesting we could have Sulphuric acid of 2mol dm-3 this we would then be able to pose the question of which acid is stronger. Doing this can improve our knowledge of whether; an acid with a bigger molecular mass has a faster rate of reaction then an acid with a lower molecular mass. To further improve this investigation, we could also add another acid with an increased molecular mass. ?? ?? ?? ?? Science: Chemistry I.B Rate of reaction of Magnesium with Hydrochloric acid St. Dominics International School Raj Devraj 12CRF ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Calcium Carbonate and Hydrochloric Acid

    Note that although the experiment supports the collision theory it does not prove it, as experiments can only support theories, not prove them. Inaccuracies and Possible improvements Surface area is the only independent variable, so all other measurements and actions have to stay constant throughout the 5 experiments.

  2. The Effect of Different Concentrations on the Rate of Reaction between Magnesium Ribbon and ...

    However, my results do not partially support my hypothesis as it proves that double the concentration of HCL doesn't double the rate of reaction. The greater the concentration; the greater the amount of particles colliding together. Hence, greater the amount of successful collisions per second.

  1. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    The volume of the bag allowed the calculations of the amount of baking soda and hydrochloric acid needed to create a reaction. The atmospheric pressure as well as the water vapour pressure as well as the temperature was measured. Once the volume, temperature, pressure were known the number of moles

  2. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    Put 2 test tubes into a water bath. 3. Heat the water bath to a temperature of 30�C 4. Add the luminol to the H2O2 solution 5. Record the time for chemiluminescence. 6. Repeat the steps for several times.

  1. The purpose of this investigation is to determine the effect varying temperatures have on ...

    strip MM = molar mass of Mg(s) strip ERROR ANALYSIS!!!!!! Calculating Rate of Reaction: Example for target temperature condition of 10�C Where: nMg = Moles of Mg(s) T = average time for reaction to complete for 10�C target temperature condition ERROR ANALYSIS!!!!!!! Table 3: Actual Temperature of HCl, Mass of Mg, Time Taken for Reaction between Mg

  2. Surface area vs Rate of Reaction

    not stopped for the chips after 180s as the graph still has an upward slope, suggesting that not all reactants have been use, and the setup still has more potential for more chemical reaction. Therefore, we can deduce that the reaction for the CaCO3 chips last longer than the powder.

  1. The rate of reaction between sodium thiosulfate and hydrochloric acid

    Open the tap, let the water drain out. Repeat this step with the other 2 burettes. 2. Attach 3 burette to 3 retort stands and take care that the burettes are upright and stable. 3. Close the tap of the first burette and pour sodium thiosulfate into the burette through the funnel.

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    2.1K Since total heat released = Q = mc.ΔT * Q = 15 × 4.2 × 2.1 = 132.3J Number of MgCl2 produced = Number of moles of MgO used Number of Moles of MgO used = = 0.0012moles Number of Moles of MgCl2 used =0.0012moles Std.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work