• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

Research Question By measuring the pH value of the acetic acid using a pH meter at standard lab conditions, will increasing the concentration of the acid affect its experimental determined Ka and therefore its calculated pKa?

Extracts from this document...

Introduction

High Level Chemistry Design Investigate the effect of concentration on the experimentally determined pKa of a weak acid Background Information An acid is a proton donor which means it is able to donate a proton to another substance. The substance that accepts the proton from the acid is known as a base. An acid can be categorised into being a weak or a strong acid. A weak acid is an acid which does not completely dissociates. In other words, a weak acid does not completely ionise when it is dissolved in aqueous solutions. The pKa, also known as Dissociation Constant, is a value that determines the strength of an acid or base. The pKa value of an acid or base is largely related to the pH of the substance. [1] pH is a value given between 1 and 14 to identify the concentration of hydrogen ions in an aqueous solution. pH is found by calculating the negative logarithm of the hydrogen activity in the solution. [3] pH = -log aH where aH denotes activity of hydrogen ions The dissociation can be written as Ka = [A-][H+] [HA] The unit of Ka is molar per decimetres cubed (mol/dm3) Like the relationship between pH and the hydrogen ion activity, pKa is also found bye taken the negative logarithm of Ka. ...read more.

Middle

Also ensure that the humidity of the room is kept constant for the whole time the experiment is conducted The temperature of the acetic acid when tested As experiment will be carried out at SLC the temperature of the acetic acid is likely to be 25�C - room temperature. This temperature must be kept controlled for the whole experiment as temperature can affect pH of the solution. The temperature of the solution will be measured before being tested. If acid solution is not 25�C, leave on bench for a while until temperature drops/raises to the required temperature of 25�C Contamination of equipments Distilled water will be used to thoroughly clean out the equipments before starting the experiment. Different equipments will be used for different substances. Equipments that will be reused (thermometer and pH meter) will be thoroughly cleaned with distilled water before coming into contact with the other substances The materials and apparatus used for the experiment All equipments of the same measurements, sizes and brands will be used for this experiment Amount of acetic acid being tested The amount of acetic being tested is 25dm3. A measuring cylinder will be used measure the volume of acetic acid Experimenter/s Only one and the same experimenter will carry out this experiment Materials - 25mL of 0.5 Molar of Acetic acid - 25mL of 1.0 Molar of Acetic acid - 25mL of 1.5 Molar of Acetic acid - ...read more.

Conclusion

Use the thermometer to measure the temperature of the five different acetic acid and ensure that all acid is 25�C (298 Kelvin). Use distilled water to clean the thermometer before measuring the temperature of the next acid 6. If acid solution is not yet 25�C, leave on bench for a while until temperature drops/raises to the required temperature of 25�C 7. Use the distilled water to clean off any residues on the end of the pH meter. Clean the parts that will make contact to the acid solution Carrying out experiment 1. Turn on the pH meter 2. Place the pH meter into the first beaker - 0.5M 3. Wait until a distinct, stable pH value is shown on the screen. Record the pH value onto data table 4. Use the distilled water to again clean the end of the pH meter 5. Repeat step 3-5 until there is three pH values recorded for the specific molarity acetic acid 6. Use the distilled water to thoroughly clean the ends of the pH meter 7. Repeat steps 3-7 for the remaining independent variables (1.0M; 1.5M; 2.0M; 2.5M) 8. After completing experiment, dispose the acetic acid into the sink and wash out all equipments with tap water except for the pH meter 9. Use the distilled water to thoroughly clean the part of the pH meter that made contact with the substances during the experiment ?? ?? ?? ?? Kathy Nguyen Page 3 of 7 ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB chemistry revision notes

    May combust incompletely to make C (soot) and CO. * Isomers o Hydrocarbons of the same structural formula, but different structural formulae.

  2. Acids/Bases Design Lab. How does a change in the pH value of a solution ...

    Therefore, the dependent variable will be the mass of the zinc metal remaining after it's reaction with a hydrochloric acid solution with varying pH levels, with which it was allowed to react with for 1 minute. Control Variables: 1. In essence, the aim of the investigation is to determine how

  1. Aim: Using an iodine clock reaction to find the order of hydrogen peroxide and ...

    Literature values state that H2O2 is first order and ethanoic acid is 0 order, which agrees with the conclusion made in this investigation. Source: http://www.jce.divched.org/JCESoft/CCA/CCA3/MAIN/CLOCKRX/PAGE1.HTM Evaluation 1 There are several areas of weakness in the investigation which are evaluated below: Error Significance Uncertainties Quite significant since the uncertainty of the

  2. Viscosity lab. Research question:- How is the viscosity of water affected by ...

    - hot boiling water was put into the spherical burette and was left in there for a few minutes. (this process was repeated twice in order to guarantee that the burette became very hot. This process was also conducted to guarantee that there will be a very small difference between

  1. Measuring the fatty acid percentage of the reused sunflower oil after numerous times of ...

    Some of these factors also happened because of the weakness of the design that has made at the beginning. 19 ASLAN Özge Cemre D129077 As to start with the design, the temperature which had to be kept stable during

  2. To determine the standard enthalpy of formation of Magnesium Oxide using Hess Law.

    However, sanding the 3cm strip irregularly can also chip off some metal which would further introduce random errors. Therefore, the best way to deal with this problem would be to use freshly produced Magnesium strips for the experiment and after the experiment, store Magnesium under mineral oil to prevent any

  1. Determining Ka by the half-titration of a weak acid

    = 0±0.2% So PH= 14±0.2% Thus with these results we can plot this: Volume of NaOH (0.2%) PH of solution (±0.2) 0 2.38 45 14 48 14 50 14 We know that at volume of NaOH of 45 and 48, the PH will still be 14 as it’s in excess

  2. IB Chemistry Lab Design - compare the effect of temperature on the concentrations of ...

    Thus, if the volume of air present in the system changes, the results will also change invariably. To prevent this, the amount of head space present in the system must be kept constant. This can be done by placing a lid on top of the beaker in which the acid solution is heated.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work