• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The purpose of this lab experiment is to determine whether different ionic compounds containing sodium in ethanol will affect its evaporation rate

Extracts from this document...

Introduction

Lucia Serra IB SL Chemistry Mr. McKeen March 12th, 2012 The Rate of Evaporation of Ethanol With Different Ionic Compounds Dissolved In It Purpose: The purpose of this lab experiment is to determine whether different ionic compounds containing sodium in ethanol will affect its evaporation rate, and if so, how great the difference is (percent) and be able to deduce why the change occurs. They are sodium-containing compounds because they were the most familiar to table salt, have the same number of valence electrons and the results should be fairly close to each other. Variables: * Independent: the different ionic compounds in the ethanol solution * Dependent: The rate of evaporation of ethanol solution * Controlled: * Same ethanol used * Same gas pressure sensor used throughout the entire experiment * Same balance used to measure the mass * 0.3 g of each of the ionic compounds in every trial * Same Erlenmeyer flask used during the evaporation * 10.0 mL of ethanol used in every trial Hypothesis: The ethanol solution with NaF would have the lowest evaporation rate because the interparticle forces between the NaF and C2H6O would be extremely polar because of the hydrogen bonds due to the fluorine in the ionic ...read more.

Middle

NaCl 10.0 mL 0.3 g 1. NaF 10.0 mL 0.3 g 2. NaF 10.0 mL 0.3 g 3. NaF 10.0 mL 0.3 g 4. NaF 10.0 mL 0.3 g 5. NaF 10.0 mL 0.3 g 1. NaI 10.0 mL 0.3 g 2. NaI 10.0 mL 0.3 g 3. NaI 10.0 mL 0.3 g 4. NaI 10.0 mL 0.3 g 5. NaI 10.0 mL 0.3 g *Uncertainty calculated collecting data for 200 seconds with the probe in the classroom and then subtracting the range and diving by two: **Uncertainty calculated by diving the smallest unit (1.0 mL) by two ***Uncertainty calculated by precision of instrument, only measure mass to the tenths place Data Analysis and Processing: Rate of Evaporation (? 0.055 kPa/s) of Different Ethanol Solutions Solution Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 C2H6O 0.001890 0.001555 -0.0004033 -0.0001292 -0.001599 C2H6O + NaF 0.005720 0.003746 0.002062 0.005972 0.001445 C2H6O + NaCl 0.0002420 0.004792 0.0009713 0.001206 0.001038 C2H6O + NaI 0.001903 0.001936 0.003351 0.003207 0.002856 Average Rate of Evaporation: * Mean = sum of trials/ # of trials o Uncertainty= (highest trial - lowest trial) / 2 1. C2H6O: [0.001890 kPa/s +0.001555 kPa/s +(-0.0004033 kPa/s)+(-0.0001292 kPa/s) + (-0.001599 kPa/s)] / 5= 0.0002627 kPa/s a. ...read more.

Conclusion

Also, with the help of another person, less time would be lost between pouring the ethanol into the Erlenmeyer flask and getting everything ready before collecting the data, because a couple of seconds passed by before the button was pressed. A good way to control the time so that the trials in each solution were done around approximate times was to have the mass measured out before starting out the experiment so as to be more efficient; another positive thing was that the controlled variables were kept constant throughout the experiment. Something that would help in the future would be to hold more trials, because we can see that with five, proportionately, the difference in some of the trials within each series were very different, and having more reproducible results would give more stable averages. Also, in a more advanced course, creating a vacuum would ensure that there are no other particles in the Erlenmeyer flask besides the ethanol and the solution and also having the same temperature. This is because gases in the air affect the pressure and if they reacted with any of the substances, then it would alter the pressure that the gas pressure sensor collects. ?? ?? ?? ?? Serra ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. Reactivity series for common metals experiment.

    � Iron: No texture/surface/color change (No Reaction) � Magnesium: Turns black on tis surface (Reaction) � Zinc: No texture/surface/color change (No Reaction) � Lead: No texture/surface/color change (No Reaction) I. Lead Nitrate (Pb (NO3)2 with: � Copper: No texture/surface/color change (No Reaction)

  2. Chemistry Laboratory Report --- Evaporation: Intermolecular Attractions

    attraction, while polar molecules have both van der Waals' forces and dipole-dipole attraction. Thus, less heat energy is required for the non-polar molecules to break the intermolecular forces, and attain enough energy to evaporate from the liquid. From the table, ethyl ether has the weakest intermolecular attraction while triethanolamine has the strongest.

  1. Change of Potential Difference in Voltaic Cells Lab Report

    of the two half-cells (V). Sample calculations will be provided to show the calculations needed for the preparation of copper sulfate penta-hydrate solutions, preparation of zinc sulfate hepta-hydrate solutions, the preparation of the salt bride, uncertainties and the percentage error. The formula C1.V1 = C2.V2 will be used throughout the representation of the calculations.

  2. Chemistry Line Spectra Lab

    Colour AgCl (�50nm) MgCl2 (�50nm) LiCl (�50nm) KCl (�50nm) CaCl2 (�50nm) NaCl (�50nm) NH4Cl (�50nm) Red 640 630 700 700 640 650 640 Orange 600 600 650 620 600 600 600 Yellow Green 560 550 560 550 550 Blue 500 Indigo Violet 450 420 Conclusion Through this experiment, continuous and line spectrums were investigated.

  1. How duration affects the rate of electrolysis in a Voltaic Cell

    - Blue colour of copper sulphate solution begins to get paler. - Zinc electrode begins to corrode a bit. Most corrosion can be observed at 35 minutes time interval. Note* - Uncertainties: The average reaction time was �0.5s even though it did alter from interval to interval.

  2. rate of evaporation

    Water bath machine 1 - Measuring cylinder 3 5 ml Dropper 3 - Stopwatch 3 - Table 1: list of apparatus and material used METHOD 1. Prepare the water bath machine at the temperature of 60.00C 2. Then, prepare a 1ml of 0.1M HCl in an evaporating dish, using a measuring cylinder.

  1. Ionic and Molecular Compounds Lab

    / R-B 14 yes Clear liquid Unknown6 / B-B R-R 7 yes Clear liquid Unknown7 / R-B 14 yes Clear liquid Unknown8 / B-R 4 yes Clear liquid Unknown9 / B-R 1 yes Clear liquid Unknown10 / B-B R-R 7 no Clear liquid Analysis: 1.

  2. Reaction Rate

    Four different concentrations will be trialed- 0.5M, 1.0M, 1.5M and 2.0M- each three times and then averaged out so that we achieve a more accurate result. We will alter this variable by changing the concentration of the H2SO4 solution in order to determine a relationship between the strength of

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work