• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

The rate of reaction between sodium thiosulfate and hydrochloric acid

Extracts from this document...

Introduction

DESIGN * Research question: Does the change in concentration of sodium thiosulfate and the fixed concentration of hydrochloric acid result a change in time taken for the yellow sulfur precipitate to form, thus lead to a change in time taken for the cross to disappear and the rate of reaction? * Variables: * Independent variable: The concentration of sodium thiosulfate / M. * Dependent variable: The time taken for the cross to disappear / second. * Controlled variables: * The concentration of hydrochloric acid / M. * The temperature in each conical (Erlenmeyer) flask prior to every reaction / oC. * The absence of unnecessary substances or ions. * The angle to view the cross. * Prediction: * For many reactions involving liquids or gases, increasing the concentration of the reactants increases the rate of reaction. In order for any reaction to happen, particles must first collide. This is true whether both particles are in solution, or whether one is in solution and the other a solid. If the concentration is higher, the chances of collision are greater [1]. * In the reaction between sodium thiosulfate solution and dilute hydrochloric acid, yellow sulfur (S(s)) ...read more.

Middle

each time to watch the cross disappearing. Making different angles could result uncertainties for when to stop the watch. DATA COLLECTION AND PROCESSING * Raw data table: Na2S2O3 (± 0.0500 ml) H2O (± 0.0500 ml) 1. Time taken (± 0.0100 s) 2. Time taken (± 0.0100 s) 3. Time taken (± 0.0100 s) 10.00 40.00 252.0 261.0 265.0 15.00 35.00 140.0 138.0 142.0 20.00 30.00 101.0 104.0 103.0 25.00 25.00 79.00 74.00 77.00 30.00 20.00 62.00 66.00 68.00 35.00 15.00 54.00 58.00 57.00 40.00 10.00 47.00 50.00 47.00 45.00 5.000 44.00 43.00 42.00 50.00 0.000 36.00 37.00 35.00 Table 2.1 shows the collected raw data table. * Processed data: * Calculating the concentration of sodium thiosulfate in each sample: * Formula: Concentration = 0.1 x (Volume of sodium thiosulfate 0.100 M divided by Volume of the solution). Multiplying 0.1 is because the given sodium thiosulfate is 0.1000 M. Volume of sodium thiosulfate 0.10 M (± 0.0500 ml) Volume of water (± 0.0500 ml) Volume of the solution (± 0.1000 ml ) Concentration / M 10.00 40.00 50.00 0.0200 15.00 35.00 50.00 0.0300 20.00 30.00 50.00 0.0400 25.00 25.00 50.00 0.0500 30.00 20.00 50.00 0.0600 35.00 15.00 50.00 0.0700 40.00 10.00 50.00 0.0800 45.00 5.000 50.00 0.0900 50.00 0.000 50.00 0.1000 Table 2.2 shows the processed different concentrations of sodium thiosulfate used. ...read more.

Conclusion

than other values. * There is irritating odour familiar as the smell of a just-struck match. Although it provides the qualitative observation that supports the hypothesis, the odour takes very long time to be completely removed by the air ventilator. * Improving the investigation: * The procedures can be partially replaced by computer data logging suggested by Laurence Rogers (1995) [6] to prevent uncertainties from human errors when stopping the watch. The experiment can be programmed to collect the data (Time taken for the cross to disappear) automatically. * The consequence of very low concentration of sodium thiosulfate (for instance, Na2S2O3 0.02 M and 0.03 M) is, these concentration value although still support the hypothesis (lower concentration of sodium thiosulfate -> more time taken for the cross to disappear), do not fit the expected very strong negative correlation between the concentration of sodium thiosulfate and the mean time taken for the cross to disappear. Attention therefore needs to be paid in the ranges from Na2S2O3 0.04 M to 0.1 M. The ranges are therefore can be altered to 7, from 0.04 M , 0.05 M , to 0.09 M, 0.1 M. * The enclosed bung can be used to cover the lip of the conical flask to prevent the release of sulfur dioxide gas. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. IB chemistry revision notes

    so it is favoured by low temperature. * Less moles of product is gas. So high pressure is favoured. * Catalyst: Pt or Vanadium (V) oxide * T = 450 oC, P = 2 atm. Produces 99% yield, even with the low P. ACIDS AND BASES Properties of Acids and Bases * Acid: a substance that will give ions in aqueous solution.

  2. Aim: To study and investigate the effect of temperature on the rate of ...

    1M Sodium Thiosulphate * 1M Hydrochloric acid * Thermometer * Tripod and Wire Gauze * Bunsen Burner * Water Bath * Labels * Cross on paper Procedure: 1. Using a measuring cylinder, measure 10cm3 of sodium thiosulphate solution and 40cm3 of distilled water and add them to a conical flask.

  1. Investigate the rate of reaction of luminol in various factors. The objective was to ...

    Gloves have to be worn when diluting hydrogen peroxide. Chemicals (5) * Luminol * Hydrogen peroxide H2O2 * Sodium carbonate Na2CO3 * Sodium hydrogen carbonate NaHCO3 * Ammonium carbonate (NH4)2CO3 * Copper(II) sulphate CuSO4 * 5H2O Equipments required * 250cm3 volumetric flasks * 25cm3 pipette * Measuring cylinder * balance * beaker * timer * water bath * crushed ice * test tubes * Thermometers Preparation (Luminol solution)

  2. Chemistry extended essay - investigate the effect of 2-bromo-2-methyl propane concentration and temperature of ...

    color of the solution start changing to yellow we stop the stop watch and record the time 5- Repeat the procedure at least three times and calculate the average. 6- Tabulate the results in record B. b- Experimental procedure: to measure the time necessary for 10 % solvolysis of t - butyl chloride (0.1 M concentration)

  1. Research Question Find the rate expression for a reaction between propanone and iodine

    Time (Trial 2) (s) Rate for Trial 1 (1/time) Rate for trial 2 (1/time) Average rate 128 131 0.0078 0.0076 0.0075 144 146 0.0069 0.0068 0.0069 171 167 0.0058 0.0059 0.0059 206 197 0.0048 0.0050 0.0049 279 298 0.0036 0.0033 0.0035 Experiment 3: Changing the concentration of Propanone Conc Propanone (mol dm-3)

  2. Rate of Reaction sodium thiosulphate

    Conclusion The aim of this investigation was to show relationships between the rate of reaction and one aspect that would affect it. In this experiment the concentration of sulphuric acid was used to determine relationships with the rate of reaction with sodium thiosulphate.

  1. Measuring the fatty acid percentage of the reused sunflower oil after numerous times of ...

    5.141 ± 0.019% = 2.6% ± 0.2% ml/g oleic acid Trial 3: V = 53.0 ± 0.1 ml â Vε = 53.0 ± 0.2% ml m = 5.479 ± 0.001 g â mε = 5.479 ± 0.018% g A% = (53.0 ± 0.2% x 0.0028 x 100)

  2. Hypo Sodium Thiosulfate Kinetics Lab

    For the hydrochloric acid, do not obtain a reservoir, but rather extract your 2.5mL of HCl for every reaction; measure 2.5 mL HCl, use in trial, then measure 2.5mL again from classroom reservoir/container. Write a large black âXâ in thick marker or pen on a blank sheet of copy paper.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work