• Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

To determine the molecular mass of an unknown alkali metal carbonate, X2CO3.

Extracts from this document...


Candidate Name: Candidate Number: Page | International Baccalaureate Diploma Program (IBDP) Session: May 2015 Chemistry HL Lab Report Lab Report Title: To determine the molecular mass of an unknown alkali metal carbonate, X2CO3. Criteria Assessed: * Data Collection and Processing (DCP) * Conclusion and Evaluation (CE) Candidate Name: Candidate Number: International School, Singapore AIM: To determine the molecular mass of an unknown alkali metal carbonate X2CO3 using titration. INTRODUCTION: Since substance Z is an alkali metal carbonate, it can safely be hypothesized that the compound is most likely to be the carbonate of Lithium, Sodium or Potassium since these are the only three alkali metal carbonates which are stable and safe to use in a school laboratory. Alkali metal carbonates are basic in nature and dissolve in water hence forming basic solutions. These basic solutions can readily react with strong acids such as HCl to form a salt and water. Therefore, in order to determine the molecular mass of substance Z, its ability to form alkali solutions was exploited and hence, aqueous samples of substance Z was titrated against 0.1 molarity solutions of HCl. Substance Z reacts with HCl according to the following balanced chemical equation: X2CO3 (aq.) + 2HCl (aq.) ? 2XCl (aq.) + CO2 (g) + H2O (l) VARIABLES: Independent Variables: 1. Mass of substance Z ? The same digital balance was used to weigh out all the nine samples. 2. Volume of substance Z solution ? 25.0cm3 of substance Z solution was used for each of the nine trial. ...read more.


This data is represented in the following table. 1.5g of substance Z 2.0g of substance Z 2.5g of substance Z Volume of substance Z solution (±0.03cm3) 25.0 25.0 25.0 Average volume of HCl required for neutralization (±0.10cm3) 28.0 37.1 47.2 Table 2: Average volumes of substance Z solution and HCl used in all trials. To determine the molar mass of X2CO3, we need to find the moles of X2CO3 that are present in 25.0cm3 of substance Z solution. Part 1: Determining number of moles of X2CO3 in 1.5g of substance Z Since 1.5g was used to make 250cm3, 25cm3 of solution is assumed to have 0.15g of X2CO3. Number of moles (mol) = Concentration (mol/dm3) x volume (dm3). Therefore, moles of HCl = Concentration of HCl (mol/dm3) × Volume of HCl (dm3) = 0.1 × = 0.0028 moles HCl reacts with substance Z according to the following balanced chemical equation: X2CO3 (aq.) + 2HCl → 2XCl (aq.) + CO2 (g) + H2O (l) Therefore, it can be seen from the balanced equation of the reaction that every two moles of HCl require one mole of X2CO3 which means that 0.0028moles will require 0.0014moles of X2CO3. Since the reaction had reached completion, it can be assumed that the required 0.0014 moles of X2CO3 was present in the 25cm3 of the solution which was assumed to have 0.15g of X2CO3. Therefore, total mass of 0.0014 moles of X2CO3 is considered to be 0.15g. This formula can be rearranged to make molecular mass the subject → . ...read more.


However, over time, evaporation of water from the solution may lead to increase in molarity which in turn would lead to overstatement of the value for the molecular mass of X2CO3. This problem can be solved rather easily by simply making a standardized solution in the lab itself eliminating any dependence on the labels. 3. Parallax error in reading the burette might have led to overstatement or understatement of the value for the molecular mass of X2CO3. This can be avoided by using a mirror against the markings to obtain a more accurate readings and reading only the lower meniscus of the liquid in the burette. 4. Due to the continued usage of the white tile by various students for various experiments, it is unavoidable to have some stains on it. Our white tile had very minute yellowish stain on it which might have interfered with the orange color leading to some inaccuracies in reading the end-point of the reaction. Nonetheless, as much care as possible was taken but a very minor systematic error was unavoidable. Overall, I would say that the experiment was satisfactory in the given conditions where both time and resource were limited. Alternate methods to obtain the molecular mass of unknown substance Z could be used in addition to this method after which, the results can be analyzed to give a much more accurate value for the molecular mass of X2CO3. However, in the time constraints of our lab classes, it was not possible to perform both experiments with the same level of accuracy and we chose not to perform two experiment because that would compromise with the accuracy of both. ...read more.

The above preview is unformatted text

This student written piece of work is one of many that can be found in our International Baccalaureate Chemistry section.

Found what you're looking for?

  • Start learning 29% faster today
  • 150,000+ documents available
  • Just £6.99 a month

Not the one? Search for your essay title...
  • Join over 1.2 million students every month
  • Accelerate your learning by 29%
  • Unlimited access from just £6.99 per month

See related essaysSee related essays

Related International Baccalaureate Chemistry essays

  1. A comparison of various proprieary antacids

    Eno powder per trial and 2 tea spoons of Zolicid gel per trial. The concentration Of aqueous sodium hydroxide base( NaOH )- 0.5M standardized NaOH will be used for all trials. The number of drops of phenolphthalein indicator added for each trial- three drops of phenolphthalein indicator will be added in each trial, for all antacids.

  2. Hous Process for producing Sodium Carbonate

    which is useful for farming. Where as the by-product of Solvay process is calcium chloride (CaCl2) which will pollute the environment. Conclusion: Hou's process helped Chinese government solve lots of problems in the 1930s, because a lot of industries needed to use Sodium Carbonate (Na2CO3).

  1. im To determine the relative molecular mass of chloroacetic acid ClCH2COOH

    Number of moles of chloracetic acid in 100 cm3 chloroacetic acid solution 2.1* 10-3 moles of ClCH2COOH � 10.00 cm3 of ClCH2COOH x � 100.00 cm3 of ClCH2COOH Number of moles of ClCH2COOH in 100.00 cm3 solution = x = 2.1*10-3 * 100.00 = 2.1 * 10-2 mol 10.00 4.

  2. The purpose of this experiment was to determine the molar mass of carbon dioxide ...

    The flask with air became constant at about 48.303 g (� 0.01 g) and after inserting and measuring the flask with CO2 three times, it finally stabilised at 48.360 g (� 0.01 g). The flask with water weighed 157.2 g (� 0.1 g), the temperature was found to be 21�C (� 0.5�C), and the atmospheric pressure 750 mmHg.

  1. Airbag design lab. Is it possible to use baking soda, NaHCO3(s), and 2.00 ...

    The following was done in the experiment. The amount of reactants needed was determined by finding the volume of the ziploc bag where the reaction took place. The ziploc bag was filled with water then dumped into a graduated cylinder to determine the volume of the bag.

  2. Lab Report Determining The Relative Molecular Mass of Amidosulphuric Acid

    = 104.3-97.1 x 100% 104.3 = 6.90% CONCLUSION AND EVALUATION Conclusion The theoretical value for Relative Molecular Mass of amidosulphuric acid is 97.1 whereas experimental value of RMM that obtained from the experiment is 104.3.The percentage error is 6.90%. The difference of RMM between the theoretical and experimental value is due to limitations and errors that occurs throughout the experiment.

  1. The use of volumetric flask, burette and pipette in determining the concentration of NaOH ...

    2H2O H3O+ + There are some precautions have to carry out in this experiment. Firstly, do not allow air bubbles to be trapped in the nozzle of the burette. Usually an air bubble is present in the nozzle of the burette, it must be removed before taking the initial reading.

  2. Experiment to find the relative atomic mass of lithium

    A method to try and avoid this error could be by tying a piece of string around the lithium and placing it in the flask with your partner at the ready to place the bung on top.

  • Over 160,000 pieces
    of student written work
  • Annotated by
    experienced teachers
  • Ideas and feedback to
    improve your own work